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Abstract

We propose a robust answer reranking
model for non-factoid questions that inte-
grates lexical semantics with discourse in-
formation, driven by two representations
of discourse: a shallow representation cen-
tered around discourse markers, and a
deep one based on Rhetorical Structure
Theory. We evaluate the proposed model
on two corpora from different genres and
domains: one from Yahoo! Answers and
one from the biology domain, and two
types of non-factoid questions: manner
and reason. We experimentally demon-
strate that the discourse structure of non-
factoid answers provides information that
is complementary to lexical semantic sim-
ilarity between question and answer, im-
proving performance up to 24% (relative)
over a state-of-the-art model that exploits
lexical semantic similarity alone. We fur-
ther demonstrate excellent domain transfer
of discourse information, suggesting these
discourse features have general utility to
non-factoid question answering.

1 Introduction

Driven by several international evaluations and
workshops such as the Text REtrieval Conference
(TREC)1 and the Cross Language Evaluation Fo-
rum (CLEF),2 the task of question answering (QA)
has received considerable attention. However,
most of this effort has focused on factoid questions
rather than more complex non-factoid (NF) ques-
tions, such as manner, reason, or causation ques-
tions. Moreover, the vast majority of QA mod-
els explore only local linguistic structures, such
as syntactic dependencies or semantic role frames,

1http://trec.nist.gov
2http://www.clef-initiative.eu

which are generally restricted to individual sen-
tences. This is problematic for NF QA, where
questions are answered not by atomic facts, but
by larger cross-sentence conceptual structures that
convey the desired answers. Thus, to answer NF
questions, one needs a model of what these answer
structures look like.

Driven by this observation, our main hypothe-
sis is that the discourse structure of NF answers
provides complementary information to state-of-
the-art QA models that measure the similarity (ei-
ther lexical and/or semantic) between question and
answer. We propose a novel answer reranking
(AR) model that combines lexical semantics (LS)
with discourse information, driven by two rep-
resentations of discourse: a shallow representa-
tion centered around discourse markers and sur-
face text information, and a deep one based on
the Rhetorical Structure Theory (RST) discourse
framework (Mann and Thompson, 1988). To the
best of our knowledge, this work is the first to
systematically explore within- and cross-sentence
structured discourse features for NF AR. The con-
tributions of this work are:

1. We demonstrate that modeling discourse is
greatly beneficial for NF AR for two types
of NF questions, manner (“how”) and rea-
son (“why”), across two large datasets from
different genres and domains – one from the
community question-answering (CQA) site
of Yahoo! Answers3, and one from a biology
textbook. Our results show statistically sig-
nificant improvements of up to 24% on top of
state-of-the-art LS models (Yih et al., 2013).

2. We demonstrate that both shallow and deep
discourse representations are useful, and, in
general, their combination performs best.

3. We show that discourse-based QA models us-
ing inter-sentence features considerably out-

3http://answers.yahoo.com



perform single-sentence models when an-
swers span multiple sentences.

4. We demonstrate good domain transfer per-
formance between these corpora, suggesting
that answer discourse structures are largely
independent of domain, and thus broadly ap-
plicable to NF QA.

2 Related Work
The body of work on factoid QA is too broad to be
discussed here (see, e.g., the TREC workshops for
an overview). However, in the context of LS, Yih
et al. (2013) recently addressed the problem of an-
swer sentence selection and demonstrated that LS
models, including recurrent neural network lan-
guage models (RNNLM), have a higher contribu-
tion to overall performance than exploiting syntac-
tic analysis. We extend this work by showing that
discourse models coupled with LS achieve the best
performance for NF AR.

The related work on NF QA is considerably
more scarce, but several trends are clear. First,
most NF QA approaches tend to use multiple sim-
ilarity models (information retrieval or alignment)
as features in discriminative rerankers (Riezler et
al., 2007; Higashinaka and Isozaki, 2008; Ver-
berne et al., 2010; Surdeanu et al., 2011). Sec-
ond, and more relevant to this work, all these ap-
proaches focus either on bag-of-word representa-
tions or linguistic structures that are restricted to
single sentences (e.g., syntactic dependencies, se-
mantic roles, or standalone discourse cue phrases).

Answering how questions using a single dis-
course marker, by, was previously explored by
Prager et al. (2000), who searched for by followed
by a present participle (e.g. by *ing) to elevate an-
swer candidates in a ranking framework. Verberne
et al. (2011) extracted 47 cue phrases such as be-
cause from a small collection of web documents,
and used the cosine similarity between an answer
candidate and a bag of words containing these cue
phrases as a single feature in their reranking model
for non-factoid why QA. Extending this, Oh et
al. (2013) built a classifier to identify causal re-
lations using a small set of cue phrases (e.g., be-
cause and is caused by). This classifier was then
used to extract instances of causal relations in an-
swer candidates, which were turned into features
in a reranking model for Japanense why QA.

In terms of discourse parsing, Verberne et al.
(2007) conducted an initial evaluation of the util-
ity of RST structures to why QA by evaluating

Figure 1: Architecture of the reranking framework for QA.

performance on a small sample of seven WSJ ar-
ticles drawn from the RST Treebank (Carlson et
al., 2003). They later concluded that while dis-
course parsing appears to be useful for QA, auto-
mated discourse parsing tools are required before
this approach can be tested at scale (Verberne et
al., 2010). Inspired by this previous work and re-
cent work in discourse parsing (Feng and Hirst,
2012), our work is the first to systematically ex-
plore structured discourse features driven by sev-
eral discourse representations, combine discourse
with lexical semantic models, and evaluate these
representations on thousands of questions using
both in-domain and cross-domain experiments.

3 Approach

The proposed answer reranking component is em-
bedded in the QA framework illustrated in Figure
1. This framework functions in two distinct sce-
narios, which use the same AR model, but differ
in the way candidate answers are retrieved:

CQA: In this scenario, the task is defined as
reranking all the user-posted answers for a particu-
lar question to boost the community-selected best
answer to the top position. This is a commonly
used setup in the CQA community (Wang et al.,
2009).4 Thus, for a given question, all its answers
are fetched from the answer collection, and an ini-
tial ranking is constructed based on the cosine sim-
ilarity between theirs and the question’s lemma
vector representations, with lemmas weighted us-
ing tf.idf (Ch. 6, (Manning et al., 2008)).

4Although most of these works use shallow textual fea-
tures and focus mostly on meta data, e.g., number of votes
for a particular answer. Here we use no meta data and rely
solely on linguistic features.



Traditional QA: In this scenario answers are
dynamically constructed from larger docu-
ments (Pasca, 2001). We use this setup to answer
questions from a biology textbook, where each
section is indexed as a standalone document, and
each paragraph in a given document is considered
as a candidate answer. We implemented the docu-
ment indexing and retrieval stage using Lucene5.
The candidate answers are scored using a linear
interpolation of two cosine similarity scores:
one between the entire parent document and
question (to model global context), and a second
between the answer candidate and question (for
local context).6 Because the number of answer
candidates is typically large (e.g., equal to the
number of paragraphs in the textbook), we return
the N top candidates with the highest scores.

These answer candidates are then passed to the
answer reranking component, the focus of this
work. AR analyzes the candidates using more
expensive techniques to extract discourse and LS
features (detailed in §4), and these features are
then used in concert with a learning framework to
rerank the candidates and elevate correct answers
to higher positions. For the learning framework,
we used SVMrank, a variant of Support Vector
Machines for structured output adapted to rank-
ing problems.7 In addition to these features, each
reranker also includes a single feature containing
the score of each candidate, as computed by the
above candidate retrieval (CR) component.8

4 Models and Features

We propose two separate discourse representation
schemes – one shallow, centered around discourse
markers, and one deep, based on RST.

4.1 Discourse Marker Model

The discourse marker model (DMM) extracts
cross-sentence discourse structures centered
around a discourse marker. This extraction pro-
cess is illustrated in the top part of Figure 2. These
structures are represented using three components:
(1) A discourse marker from Daniel Marcu’s list

5http://lucene.apache.org
6We empirically observed that this combination of scores

performs better than using solely the cosine similarity be-
tween the answer and question.

7http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

8Including these scores as features in the reranker model
is a common strategy that ensures that the reranker takes ad-
vantage of the analysis already performed by the CR model.

(see Appendix B in Marcu (1997)), that serves as
a divisive boundary between sentences. Examples
of these markers include and, in, that, for, if, as,
not, by, and but; (2) two marker arguments, i.e.,
text segments before and after the marker, labeled
to indicate if they are related to the question text or
not; and (3) a sentence range around the marker,
which defines the length of these segments (e.g.,
±2 sentences). For example, a marker feature
may take the form of: QSEG BY OTHER SR2,
which means that the the marker by has been
detected in an answer candidate. Further, the text
preceeding by matches text from the question (and
is therefore labeled QSEG), while the text after by
differs considerably from the question text, and
is labeled OTHER. In this particular example, the
scope of this similarity matching occurs over a
span of ±2 sentences around the marker.

Note that our marker arguments are akin to
EDUs in RST, but, in this shallow representa-
tion, they are simply constructed around discourse
markers and bound by an arbitrary sentence range.

Argument Labels: We label marker arguments
based on their similarity to question content. If
text before or after a marker out to a given sen-
tence range matches the entire text of the ques-
tion (with a cosine similarity score larger than a
threshold), that argument takes on the label QSEG,
or OTHER otherwise. In this way the features are
only partially lexicalized with the discourse mark-
ers. Argument labels indicate only if lemmas from
the question were found in a discourse structure
present in an answer candidate, and do not speak
to the specific lemmas that were found. We show
in §5 that these lightly lexicalized features perform
well in domain and transfer between domains. We
explore other argument labeling strategies in §5.7.

Feature Values: Our reranking framework uses
real-valued features. The values of the discourse
features are the mean of the similarity scores (e.g.,
cosine similarity using tf.idf weighting) of the two
marker arguments and the corresponding question.
For example, the value of the QSEG BY QSEG SR1

feature in Figure 2 is the average of the cosine sim-
ilarities of the question text with the answer texts
before/after by out to a distance of one sentence
before/after the marker.

It is important to note that these discourse
features are more expressive than features based
on discourse markers alone (Higashinaka and
Isozaki, 2008; Verberne et al., 2010). First,



Figure 2: Top: Example feature generation for the discourse marker model, for one question (Q) and one answer candidate

(AC). Answer candidates are searched for discourse markers (italic) and question word matches (bold), which are used to

generate features both within-sentence (SR0), and ±1 sentence (SR1). The actual DMM exhaustively generates features for all

markers and all sentence ranges. Here we show just a few for brevity. Bottom: Example feature generation for the discourse

parser model using the output of an actual discourse parser. The DPM creates one feature for each individual discourse relation.

the argument sequences used here capture cross-
sentence discourse structures. Second, these fea-
tures model the intensity of the match between the
text surrounding the discourse structure and the
question text using both the assigned argument la-
bels and the feature values.

4.2 Discourse Parser Model

The discourse parser model (DPM) is based on the
RST discourse framework (Mann and Thompson,
1988). In RST, the text is segmented into a se-
quence of non-overlapping fragments called ele-
mentary discourse units (EDUs), and binary dis-
course relations recursively connect neighboring
units. Most relations are hypotactic, where one
of the units in the relation (the nucleus) is consid-
ered more important than the other (the satellite).
A few relations are paratactic, where both partici-
pants have equal importance. In the bottom part of
Figure 2, we show hypotactic relations as directed
arrows, from the nucleus to the satellite. In this
work, we construct the RST discourse trees using
the parser of Feng and Hirst (2012).

Relying on a proper discourse framework facil-
itates the modeling of the numerous implicit re-
lations that are not driven by discourse markers
(see Ch. 21 in Jurafsky and Martin (2009)). How-
ever, this also introduces noise because discourse
analysis is a complex task and discourse parsers
are not perfect. To mitigate this, we used a sim-
ple feature generation strategy, which creates one
feature for each individual discourse relation by
concatenating the relation type with the labels of
the discourse units participating in it. To this end,
for every relation, we extract the entire text dom-
inated by each of its arguments, and we gener-
ate labels for the two participants in the relation

using the same strategy as the DMM (based on
the similarity with the question content). Similar
to the DMM, these features take real values ob-
tained by averaging the cosine similarity of the ar-
guments with the question content.9 Fig. 2 shows
several such features, created around two RST
Elaboration relations, indicating that the latter
sentences expand on the information at the begin-
ning of the answer. Other common relations in-
clude Attribution, Contrast, Background, and
Evaluation.

4.3 Lexical Semantics Model

Inspired by the work of Yih et al. (2013), we in-
clude lexical semantics in our reranking model.
Several of their proposed models rely on propri-
etary data; here we focus on LS models that rely
on open-source data and frameworks. In particu-
lar, we use the recurrent neural network language
model (RNNLM) of Mikolov et al. (2013; 2010).
Like any language model, a RNNLM estimates the
probability of observing a word given the preced-
ing context, but, in this process, it learns word
embeddings into a latent, conceptual space with
a fixed number of dimensions. Consequently, re-
lated words tend to have vectors that are close to
each other in this space.

We derive two LS measures from these vec-
tors, which are then are included as features in
the reranker. The first is a measure of the over-
all LS similarity of the question and answer can-

9We investigated more complex features, e.g., by explor-
ing depths of two and three in the discourse tree, and also
models that relied on tree kernels over these trees, but none
improved upon this simple representation. This suggests that,
in the domains explored here, there is a degree of noise intro-
duced by the discourse parser, and the simple features pro-
posed here are the best strategy to avoid overfitting on it.



didate, which is computed as the cosine similarity
between the two composite vectors of the ques-
tion and the answer candidate. These composite
vectors are assembled by summing the vectors for
individual question (or answer candidate) words,
and re-normalizing this composite vector to unit
length. Both this overall similarity score, as well
as the average pairwise cosine similarity between
each word in the question and answer candidate,
serve as features.

5 Experiments

5.1 Data

To test the utility of our approach, we experi-
mented with the two QA scenarios introduced in
§3 using the following two datasets:

Yahoo! Answers Corpus (YA): Yahoo! An-
swers10 is an open domain community-generated
QA site, with questions and answers that span for-
mal and precise to informal and ambiguous lan-
guage. Due to the speed limitations of the dis-
course parser, we randomly drew 10,000 QA pairs
from the corpus of how questions described by
Surdeanu et al. (2011) using their filtering crite-
ria, with the additional criterion that answers had
to contain at least four community-generated an-
swers, one of which was voted as the top answer.
The number of answers to each question ranged
from 4 to over 50, with the average 9.11

Biology Textbook Corpus (Bio): This corpus fo-
cuses on the domain of cellular biology, and con-
sists of 185 how and 193 why questions hand-
crafted by a domain expert. Each question has
one or more gold answers identified in Campbell’s
Biology (Reece et al., 2011), a popular under-
graduate text. The entire biology text (at para-
graph granularity) serves as the possible set of an-
swers. Note that while our system retrieves an-
swers at paragraph granularity, the expert was not
constrained in any way during the annotation pro-
cess, so gold answers might be smaller than a para-
graph or span multiple paragraphs. This compli-
cates evaluation metrics on this dataset (see §5.3).

10http://answers.yahoo.com
11Note that our experimental setup, i.e., reranking all the

answers provided for each question, is different from that of
Surdeanu et al. For each question, they retrieved candidate
answers from all answers voted as best for some question in
the collection. The setup in this paper, commonly used in the
CQA community (Wang et al., 2009), is more relevant here
because it includes both high and low quality answers.

For the YA CQA corpora, 50% of QA pairs
were used for training, 25% for development, and
25% for test. Because of the small size of the
Bio corpus, it was evaluated using 5-fold cross-
validation, with three folds for training, one for
development, and one for test.

The following additional resources were used:

Discourse Markers: A set of 75 high-frequency12

single-word discourse markers were extracted
from Marcu’s (1997) list of cue phrases, and used
for feature generation in DMM. These discourse
markers are extremely common in the answer cor-
pora – for example, the YA corpus contains an av-
erage of 7 markers per answer.

Discourse Trees: We generated all discourse trees
using the parser of Feng and Hirst (2012). For
YA, we parsed entire answers. For Bio, we parsed
individual paragraphs. Note that, because these
domains are considerably different from the RST
Treebank, the parser fails to produce a tree on
a large number of answer candidates: 6.2% for
YA, and 41.1% for Bio. In these situations, we
constructed artificial discourse trees using a right-
attachment heuristic and a single relation label X.

Lexical Semantics: We trained two different
RNNLMs for this work. First, for the YA exper-
iments we trained an open-domain RNNLM us-
ing the entire Gigaword corpus of approximately
4G words.13 For the Bio experiments, we trained
a domain specific RNNLM over a concatenation
of the textbook and a subset of Wikipedia spe-
cific to biology. The latter was created by ex-
tracting: (a) pages matching a word/phrase in a
glossary of biology (derived from the textbook);
plus (b) pages hyperlinked from (a) that are also
tagged as being in a small set of (hand-selected)
biology-related categories. The combined dataset
contains 7.7M words. For all RNNLMs we used
200-dimensional vectors.

5.2 Hyper Parameter Tuning

The following hyper parameters were tuned using
grid search to maximize P@1 on each develop-
ment partition: (a) the segment matching thresh-
olds that determine the minimum cosine simi-
larity between an answer segment and a ques-
tion for the segment to be labeled QSEG; and (b)

12We selected all cue phrases with more than 100 occur-
rences in the Brown corpus.

13LDC catalog number LDC2012T21



P@1 MRR
# Model/Features P@1 Impr. MRR Impr.

YA Corpus
1 Random Baseline 14.29 26.12
2 CR Baseline 19.57 43.14
3 CR + DMM 24.05∗ +23% 46.40∗ +8%
4 CR + DPM 24.29∗ +24% 46.81∗ +9%
5 CR + DMM + DPM 24.81∗ +27% 47.10∗ +9%
6 CR + LS Baseline 26.57 49.31
7 CR + LS + DMM 29.29∗ +10% 50.99∗ +3%
8 CR + LS + DPM 28.73∗ +8% 50.77∗ +3%
9 CR + LS + DMM + DPM 30.49∗ +15% 51.89∗ +5%

Bio HOW
10 CR Baseline 24.12 32.90
11 CR + DMM 29.88∗ +24% 38.88∗ +18%
12 CR + DPM 28.93∗ +20% 37.75∗ +15%
13 CR + DMM + DPM 30.43∗ +26% 39.28∗ +19%
14 CR + LS Baseline 25.35 33.79
15 CR + LS + DMM 30.09∗ +19% 39.04∗ +16%
16 CR + LS + DPM 28.50 +12% 37.58∗ +11%
17 CR + LS + DMM + DPM 30.68∗ +21% 39.44∗ +17%

Bio WHY
18 CR Baseline 28.62 38.25
19 CR + DMM 38.01∗ +33% 46.39∗ +21%
20 CR + DPM 38.62∗ +35% 46.85∗ +23%
21 CR + DMM + DPM 39.36∗ +38% 47.64∗ +25%
22 CR + LS Baseline 31.73 39.89
23 CR + LS + DMM 38.60∗ +22% 46.41∗ +16%
24 CR + LS + DPM 39.45∗ +24% 47.38∗ +19%
25 CR + LS + DMM + DPM 39.32∗ +24% 47.86∗ +20%

Table 1: Overall results across three datasets. The improve-

ments in each section are computed relative to their respective

baseline (CR or CR + LS). Bold font indicates the best score

in a given column. ∗ indicates that a score is significantly bet-

ter (p < 0.05) than the score of the corresponding baseline.

All significance tests were implemented using one-tailed non-

parametric bootstrap resampling using 10,000 iterations.

SVMrank’s regularization parameter C. For all ex-
periments, the sentence range parameter (SRx) for
DMM ranged from 0 (within sentence) to ±3 sen-
tences.14

5.3 Evaluation Metrics
For YA, we used the standard implementations for
P@1 and mean reciprocal rank (MRR) (Manning
et al., 2008). In the Bio corpus, because answer
candidates are not guaranteed to match gold anno-
tations exactly, these metrics do not immediately
apply. We adapted them to this dataset by weigh-
ing each answer by its overlap with gold answers,
where overlap is measured as the highest F1 score
between the candidate and a gold answer. Thus,
P@1 reduces to this F1 score for the top answer.
For MRR, we used the rank of the candidate with
the highest overlap score, weighed by the inverse
of the rank. For example, if the best answer for a
question appears at rank 2 with an F1 score of 0.3,
the corresponding MRR score is 0.3/2.

14This was only limited to reduce the combinatorial expan-
sion of feature generation, and in principle could be set much
broader.

5.4 Overall Results

Table 1 analyzes the performance of the proposed
reranking model on the three datasets and against
two baselines. The first baseline sorts the can-
didate answers in descending order of the scores
produced by the candidate retrieval (CR) module.
The second baseline (CR + LS) trains a rerank-
ing model without discourse, using just the CR
and LS features. For YA, we include an addi-
tional baseline that selects an answer randomly.
We list multiple versions of the proposed rerank-
ing model, broken down by the features used. For
Bio, we retrieved the top 20 answer candidates in
CR. At this setting, the oracle performance (i.e.,
the performance with perfect reranking of the 20
candidates) was 69.6% P@1 for Bio HOW, and
72.3% P@1 for Bio WHY. These relatively low
oracle scores, which serve as a performance ceil-
ing for our approach, highlight the difficulty of the
task. For YA, we used all answers provided for
each given question. For all experiments we used
a linear SVM kernel.15

Examining Table 1, several trends are clear.
Both discourse models significantly increase both
P@1 and MRR performance over all baselines
broadly across genre, domain, and question types.
More specifically, DMM and DPM show similar
performance benefits when used individually, but
their combination generally outperforms the indi-
vidual models, illustrating the fact that the two
models capture related but different discourse in-
formation. This is a motivating result for discourse
analysis, especially considering that the discourse
parser was trained on a domain different from the
corpora used here.

Lexical semantic features increase performance
for all settings, but demonstrate far more utility
to the open-domain YA corpus. This disparity
is likely due to the difficulty in assembling LS
training data at an appropriate level for the bi-
ology corpus, contrasted with the relative abun-
dance of large scale open-domain lexical seman-
tic resources. For the YA corpus, where lexical
semantics showed the most benefit, simply adding

15The performance of all models can ultimately be in-
creased by using more sophisticated learning frameworks,
and considering more answer candidates in CR (for Bio).
For example, SVMs with polynomial kernels of degree two
showed approximately half a percent (absolute) performance
gain over the linear kernel. However, this came at the ex-
pense of an experiment runtime about an order of magni-
tude larger. Experiments with more answer candidates in Bio
showed similar trends to the results reported.



Q How does myelination affect action potentials?
Abaseline The major selective advantage of myelination is its space ef-

ficiency. A myelinated axon 20 microns in diameter has a
conduction speed faster than that of a squid giant axon [. . . ].
Furthermore, more than 2,000 of those myelinated axons can
be packed into the space occupied by just one giant axon.

Arerank A nerve impulse travels [. . . ] to the synaptic terminals by
propagation of a series action potentials along the axon. The
speed of conduction increases [. . . ] with myelination. Action
potentials in myelinated axons jump between the nodes of
Ranvier, a process called saltatory conduction.

Table 2: An example question from the Biology corpus

where the correct answer is elevated to the top position by

the discourse model. Abaseline is the top answer proposed by

the CR + LS baseline, which is incorrect, whereas Arerank is

the correct answer boosted to the top after reranking. [. . . ]

indicates non-essential text that was removed for space.

LS features to the CR baseline increases baseline
P@1 performance from 19.57 to 26.57, a +36%
relative improvement. Most importantly, compar-
ing lines 5 and 9 with their respective baselines
(lines 2 and 6, respectively) indicates that LS is
largely orthogonal to discourse. Line 5, the top-
performing model with discourse but without LS
outperforms the CR baseline by +5.24 absolute
P@1 improvement. Similarly, line 9, the top-
performing model that combines discourse with
LS has a +5.69 absolute P@1 improvement over
the CR + LS baseline. That this absolute perfor-
mance increase is nearly identical indicates that
LS features are complementary to and additive
with the full discourse model. Indeed, an analy-
sis of the questions improved by discourse vs. LS
(line 5 vs. 6) showed that the intersection of the
two sets is low (approximately a third of each set).

Finally, while the discourse models perform
well for HOW or manner questions, performance
on Bio WHY corpus suggests that reason ques-
tions are particularly amenable to discourse anal-
ysis. Relative improvements on WHY questions
reach +38% (without LS) and +24% (with LS),
with absolute performance on these non-factoid
questions jumping from 28% to nearly 40% P@1.

Table 2 shows one example where discourse
helps boost the correct answer to the top posi-
tion. In this example, the correct answer con-
tains multiple Elaboration relations that are both
cross sentence (e.g., between the first two sen-
tences) and intra-sentence (e.g., between the first
part of the second sentence and the phrase “with
myelination”). Model features associated with
Elaboration relations are ranked highly by the
learned model. In contrast, the answer preferred
by the baseline contains mostly Joint relations,

Range Bio HOW Bio WHY YA
CR + LS + DMM + DPM
within-sentence +0.8% +8.4% +13.1%
full model +21.0%∗ +23.9%∗ +14.8%

Table 3: Relative P@1 performance increase over the CR

+ LS baseline for a model containing only intra-sentence fea-

tures, compared to the full model.

which “represent the lack of a rhetorical relation
between the two nuclei” (Mann and Thompson,
1988) and have very small weights in the model.

5.5 Intra vs. Inter-sentence Features

To tease apart the relative contribution of dis-
course features that occur only within a single
sentence versus features that span multiple sen-
tences, we examined the performance of the full
model when using only intra-sentence features,
i.e., SR0 features for DMM, and features based on
discourse relations where both EDUs appear in the
same sentence for DPM, versus the full intersen-
tence models. The results are shown in Table 3.

For the Bio corpus where answer candidates
consist of entire paragraphs of a biology text, over-
all performance is dominated by inter-sentence
discourse features. Conversely, for YA, a large
proportion of performance comes from features
that span only a single sentence. This is caused
by the fact that YA answers are far shorter and
of variable grammatical quality, with 39% of an-
swer candidates consisting of only a single sen-
tence, and 57% containing two or fewer sentences.
All in all, this experiment emphasizes that model-
ing both intra- and inter-sentence discourse (where
available) is beneficial for non-factoid QA.

5.6 Domain Transfer

Because these discourse models appear to cap-
ture high-level information about answer struc-
tures, we hypothesize that the models should make
use of many of the same discourse features, even
when training on data from different domains. Ta-
ble 4 shows that of the highest-weighted SVM
features learned when training models for HOW
questions on YA and Bio, many are shared (e.g.,
56.5% of the features in the top half of both DPMs
are shared), suggesting that a core set of discourse
features may be of utility across domains.

To test the generality of these features, we per-
formed a transfer study where the full model was
trained and tuned on the open-domain YA cor-
pus, then evaluated as is on Bio HOW. This is



Model Top 10% Top 25% Top 50%
DMM 20.2% 33.2% 49.4%
DPM 22.2% 39.1% 56.5%

Table 4: Percentage of top features with the highest SVM

weights that are shared between Bio HOW and YA models.

a somewhat radical setup, where the target cor-
pus has both a different genre (formal text vs.
CQA) and different domain (biology vs. open do-
main). These experiments were performed in sev-
eral groups: both with and without LS features, as
well as using either a single SVM or an ensem-
ble model that linearly interpolates the predictions
of two SVM classifiers (one each for DMM and
DPM).16 The results are summarized in Table 5.

The transferred models always outperform the
baselines, but only the ensemble model’s improve-
ment is statistically significant. This confirms ex-
isting evidence that ensemble models perform bet-
ter cross-domain because they overfit less (Domin-
gos, 2012; Hastie et al., 2009). The ensemble
model without LS (third line) has a nearly identi-
cal P@1 score as the equivalent in-domain model
(line 13 in Table 1), while slightly surpassing in-
domain MRR performance. To the best of our
knowledge, this is one of the most striking demon-
strations of domain transfer in answer ranking
for non-factoid QA, and highlights the generality
of these discourse features in identifying answer
structures across domains and genres.

The results of the transferred models that in-
clude LS features are slightly lower, but still ap-
proach statistical significance for P@1 and are sig-
nificant for MRR. We hypothesize that the limited
transfer observed for models with LS compared to
their counterparts without LS is due to the dispar-
ity in the size and utility of the biology LS training
data compared to the open-domain LS resources.
The open-domain YA model learns to place more
weight on LS features, which are unable to provide
the same utility in the biology domain.

5.7 Integrating Discourse and LS

So far, we have treated LS and discourse as dis-
tinct features in the reranking model, However,
given that LS features greatly improve the CR
baseline, we hypothesize that a natural extension

16The interpolation parameter was tuned on the YA devel-
opment corpus. The in-domain performance of the ensemble
model is similar to that of the single classifier in both YA and
Bio HOW so we omit these results here for simplicity.

P@1 MRR
Model/Features P@1 Impr. MRR Impr.
Transfer: YA → Bio HOW
CR Baseline 24.12 32.90
CR + DMM + DPM 27.13 +13% 36.36† +11%
(CR + DMM) ∪ 30.10∗ +25% 39.62∗ +20%
(CR + DPM)
CR + LS Baseline 25.35 33.79
CR + LS + DMM + DPM 25.79 +2% 35.58 +5%
(CR + LS + DMM) ∪ 29.54† +17% 38.68∗ +15%
(CR + LS + DPM)

Table 5: Transfer performance from YA to Bio HOW for

single classifiers and ensembles (denoted with a ∪). † indi-

cates approaching statistical significance with p = 0.07 or

0.06.

to the discourse models would be to make use of
LS similarity (in addition to the traditional infor-
mation retrieval similarity) to label discourse seg-
ments. For example, for the question ”How do
cells replicate?”, answer discourse segments con-
taining LS associates of cell and replicate, e.g., nu-
cleus, membrane, genetic, and duplicate, should
be considered as related to the question (i.e., be
labeled QSEG). We implemented two such mod-
els, denoted DMMLS and DPMLS , by replacing
the component that assigns argument labels with
one that relies on LS. Specifically, as in §4.3, we
compute the cosine similarity between the com-
posite LS vectors of the question text and each
marker argument (in DMM) or EDU (in DPM),
and label the corresponding answer segment QSEG
if this score is higher than a threshold, or OTHER

otherwise. This way, the DMM and DPM features
jointly capture discourse structures and semantic
similarity between answer segments and question.

To test this, we use the YA corpus, which has
the best-performing LS model. Because we are
adding two new discourse models, we now tune
four segment matching thresholds, one for each
of the DMM, DPM, DMMLS , and DPMLS mod-
els.17 The results are shown in Table 6. These re-
sults demonstrate that incorporating LS in the dis-
course models further increases performance for
all configurations, nearly doubling the relative per-
formance benefits over models that do not inte-
grate LS and discourse (compare with lines 6–9
of Table 1). For example, the last model in the
table, which combines four discourse representa-
tions, improves P@1 by 24%, whereas the equiv-
alent model without this integration (line 9 in Ta-
ble 1) outperforms the baseline by only 15%.

17These hyperparameters were tuned on the development
corpus, and were found to be stable over broad ranges.



P@1 MRR
Model Features P@1 Impr. MRR Impr.
CR + LS Baseline 26.57 49.31
CR + LS + DMM + DMMLS 32.41∗ +22% 53.55∗ +9%
CR + LS + DPM + DPMLS 31.21∗ +18% 52.50∗ +7%
CR + LS + DMM + DPM + 32.93∗ +24% 53.91∗ +9%

DMMLS + DPMLS

Table 6: YA results with integrated discourse and LS.

5.8 Error Analysis

We performed an error analysis of the full QA
model (CR + LS + DMM + DPM) across the en-
tire Bio corpus (lines 17 and 25 from Table 1). We
chose the Bio setup for this analysis because it is
more complex than the CQA one: here gold an-
swers may have a granularity completely differ-
ent from what the system choses as best answers
(in our particular case, the QA system is currently
limited to answers consisting of single paragraphs,
whereas gold answers may be of any size).

Here, 94 of the 378 Bio HOW and WHY ques-
tions have improved answer scores, while 36 have
reduced performance relative to the CR baseline.
Of these 36 questions where answer scores de-
creased, nearly two thirds were directly related to
the paragraph granularity of the candidate answer
retrieval (see §5.1):

Same Subsection (50%): In these cases, the
model selected an on-topic answer paragraph in
the same subsection of the textbook as a gold an-
swer. Often times this paragraph directly preceded
or followed the gold answer.

Answer Window Size (14%): Here, both the CR
and full model chose a paragraph containing a dif-
ferent gold answer. However, as discussed, gold
answers may unevenly straddle paragraph bound-
aries, and the paragraph chosen by the model hap-
pened to have a somewhat lower overlap with its
gold answer than the one chosen by the baseline.

Similar Topic (25%): The model chose a para-
graph that had a similar topic to the question, but
doesn’t answer the question. These are challeng-
ing errors, often associated with short questions
(e.g. ”How does HIV work?”) that provide few
keywords. In these cases, discourse features tend
to dominate, and shift the focus towards answers
that have many discourse structures deemed rel-
evant. For example, for the above question, the
model chose a paragraph containing many dis-
course structures positively correlated with high-
quality answers, but which describes the origins
of HIV instead of how the virus enters a cell.

Similar Words, Different Topic (8%): The
model chose a paragraph that had many of the
same words as the question, but is on a different
topic. For example, for the question ”How are fos-
sil fuels formed, and why do they contain so much
energy?”, the model selected an answer that men-
tions fossil fuels in a larger discussion of human
ecological footprints. Here, the matching of both
keywords and discourse structures shifted the an-
swer towards a different, incorrect topic.

Finally, in one case (3%), the model identified
an answer paragraph that contained a gold answer,
but was missed by the domain expert annotator.

In summary, this analysis suggests that, for the
majority of errors, the QA system selects an an-
swer that is both topical and adjacent to a gold an-
swer selected by the domain expert. This suggests
that most errors are minor and are driven by cur-
rent limitations of our answer boundary selection
mechanism, rather than the inherent limitations of
the discourse model.

6 Conclusions

This work focuses on two important aspects of an-
swer reranking for non-factoid QA: similarity be-
tween question and answer content, and answer
structure. While the former has been addressed
with a variety of lexical-semantic models, the lat-
ter has received little attention. Here we show
how to model answer structures using discourse
and how to integrate the two aspects into a holis-
tic framework. Empirically we show that model-
ing answer discourse structures is complementary
to modeling lexical semantic similarity and that
the best performance is obtained when they are
tightly integrated. We evaluate the proposed ap-
proach on multiple genres and question types and
obtain benefits of up to 24% relative improvement
over a strong baseline that combines information
retrieval and lexical semantics. We further demon-
strate that answer discourse structures are largely
independent of domain and transfer well, even be-
tween radically different datasets.

This work is open source and available at:
http://nlp.sista.arizona.edu/releases/

acl2014.
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