• End-to-End Neural Ad-hoc Ranking with Kernel Pooling
    Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power SIGIR 2017
  • Ontology Aware Token Embeddings for Prepositional Phrase Attachment
    Pradeep Dasigi, Waleed Ammar, Chris Dyer, and Eduard Hovy ACL 2017
  • Word-Entity Duet Representations for Document Ranking
    Chenyan Xiong, Jamie Callan and Tie-Yan Liu SIGIR 2017

    Œis paper presents a word-entity duet framework for utilizing knowledge bases in ad-hoc retrieval. In this work, the query and documents are modeled by word-based representations and entity-based representations. Ranking features are generated by the interactions between the two representations, incorporating information from the word space, the entity space, and the cross-space connections through the knowledge graph. To handle the uncertainties from the automatically constructed entity representations, an attention-based ranking model AttR-Duet is developed. With back-propagation from ranking labels, the model learns simultaneously how to demote noisy entities and how to rank documents with the word-entity duet. Evaluation results on TREC Web Track ad-hoc task demonstrate that all of the four-way interactions in the duet are useful, the aŠention mechanism successfully steers the model away from noisy entities, and together they signi€cantly outperform both word-based and entity-based learning to rank systems. Less

  • The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction
    Waleed Ammar, Matthew E. Peters, Chandra Bhagavatula, and Russell Power SemEval 2017

    This paper describes our submission for the ScienceIE shared task (SemEval-2017 Task 10) on entity and relation extraction from scientific papers. Our model is based on the end-to-end relation extraction model of Miwa and Bansal (2016) with several enhancements such as semi-supervised learning via neural language models, character-level encoding, gazetteers extracted from existing knowledge bases, and model ensembles. Our official submission ranked first in end-to-end entity and relation extraction (scenario 1), and second in the relation-only extraction (scenario 3). Less

  • Answering Complex Questions Using Open Information Extraction
    Tushar Khot, Ashish Sabharwal, and Peter Clark ACL 2017

    While there has been substantial progress in factoid question-answering (QA), answering complex questions remains challenging, typically requiring both a large body of knowledge and inference techniques. Open Information Extraction (Open IE) provides a way to generate semi-structured knowledge for QA, but to date such knowledge has only been used to answer simple questions with retrieval-based methods. We overcome this limitation by presenting a method for reasoning with Open IE knowledge, allowing more complex questions to be handled. Using a recently proposed support graph optimization framework for QA, we develop a new inference model for Open IE, in particular one that can work effectively with multiple short facts, noise, and the relational structure of tuples. Our model significantly outperforms a state-of-the-art structured solver on complex questions of varying difficulty, while also removing the reliance on manually curated knowledge. Less

  • Semi-supervised sequence tagging with bidirectional language models
    Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power ACL 2017

    Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pre-trained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers. Less

  • YOLO9000: Better, Faster, Stronger
    Joseph Redmon and Ali Farhadi CVPR 2017

    We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that don't have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. YOLO9000 predicts detections for more than 9000 different object categories, all in real-time. Less

  • LCNN: Lookup-based Convolutional Neural Network
    Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi CVPR 2017

    Porting state of the art deep learning algorithms to resource constrained compute platforms (e.g. VR, AR, wearables) is extremely challenging. We propose a fast, compact, and accurate model for convolutional neural networks that enables efficient learning and inference. We introduce LCNN, a lookup-based convolutional neural network that encodes convolutions by few lookups to a dictionary that is trained to cover the space of weights in CNNs. Training LCNN involves jointly learning a dictionary and a small set of linear combinations. The size of the dictionary naturally traces a spectrum of trade-offs between efficiency and accuracy. Our experimental results on ImageNet challenge show that LCNN can offer 3.2x speedup while achieving2 55.1% top-1 accuracy using AlexNet architecture. Our fastest LCNN offers 37.6x speed up over AlexNet while6 maintaining 44.3% top-1 accuracy. LCNN not only offers dramatic speed ups at inference, but it also enables efficient training. In this paper, we show the benefits of LCNN in few-shot learning and few-iteration learning, two crucial aspects of on-device training of deep learning models. Less

  • Commonly Uncommon: Semantic Sparsity in Situation Recognition
    Mark Yatskar, Vicente Ordonez, Luke Zettlemoyer, and Ali Farhadi CVPR 2017

    Semantic sparsity is a common challenge in structured visual classification problems; when the output space is complex, the vast majority of the possible predictions are rarely, if ever, seen in the training set. This paper studies semantic sparsity in situation recognition, the task of producing structured summaries of what is happening in images, including activities, objects and the roles objects play within the activity. For this problem, we find empirically that most substructures required for prediction are rare, and current state-of-the-art model performance dramatically decreases if even one such rare substructure exists in the target output.We avoid many such errors by (1) introducing a novel tensor composition function that learns to share examples across substructures more effectively and (2) semantically augmenting our training data with automatically gathered examples of rarely observed outputs using web data. When integrated within a complete CRF-based structured prediction model, the tensor-based approach outperforms existing state of the art by a relative improvement of 2.11% and 4.40% on top-5 verb and noun-role accuracy, respectively. Adding 5 million images with our semantic augmentation techniques gives further relative improvements of 6.23% and 9.57% on top-5 verb and noun-role accuracy. Less

  • Are You Smarter Than A Sixth Grader? Textbook Question Answering for Multimodal Machine Comprehension
    Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Hannaneh Hajishirzi, and Ali Farhadi CVPR 2017

    We introduce the task of Multi-Modal Machine Comprehension (M3C), which aims at answering multimodal questions given a context of text, diagrams and images. We present the Textbook Question Answering (TQA) dataset that includes 1,076 lessons and 26,260 multi-modal questions, taken from middle school science curricula. Our analysis shows that a significant portion of questions require complex parsing of the text and the diagrams and reasoning, indicating that our dataset is more complex compared to previous machine comprehension and visual question answering datasets. We extend state-of-the-art methods for textual machine comprehension and visual question answering to the TQA dataset. Our experiments show that these models do not perform well on TQA. The presented dataset opens new challenges for research in question answering and reasoning across multiple modalities. Less