• Knowledge Completion for Generics Using Guided Tensor Factorization
    Hanie Sedghi and Ashish Sabharwal TACL 2017
  • See the Glass Half Full: Reasoning about Liquid Containers, their Volume and Content
    Roozbeh Mottaghi, Connor Schenck, Dieter Fox, Ali Farhadi ICCV 2017
  • Visual Semantic Planning using Deep Successor Representations
    Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-Fei, Abhinav Gupta, Roozbeh Mottaghi, Ali Farhadi ICCV 2017
  • Question Answering as Global Reasoning over Semantic Abstractions
    Daniel Khashabi, Tushar Khot, Ashish Sabharwal, and Dan Roth AAAI 2017

    We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-ofthe- art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%. Less

  • SciTail: A Textual Entailment Dataset from Science Question Answering
    Tushar Khot, Ashish Sabharwal, and Peter Clark AAAI 2017

    We present a new dataset and model for textual entailment, derived from treating multiple-choice question-answering as an entailment problem. SCITAIL is the first entailment set that is created solely from natural sentences that already exist independently "in the wild" rather than sentences authored specifically for the entailment task. Different from existing entailment datasets, we create hypotheses from science questions and the corresponding answer candidates, and premises from relevant web sentences retrieved from a large corpus. These sentences are often linguistically challenging. This, combined with the high lexical similarity of premise and hypothesis for both entailed and non-entailed pairs, makes this new entailment task particularly difficult. The resulting challenge is evidenced by state-of-the-art textual entailment systems achieving mediocre performance on SCITAIL, especially in comparison to a simple majority class baseline. As a step forward, we demonstrate that one can improve accuracy on SCITAIL by 5% using a new neural model that exploits linguistic structure. Less

  • Approximate Inference via Weighted Rademacher Complexity
    Jonathan Kuck, Ashish Sabharwal, and Stefano Ermon AAAI 2017

    Rademacher complexity is often used to characterize the learnability of a hypothesis class and is known to be related to the class size. We leverage this observation and introduce a new technique for estimating the size of an arbitrary weighted set, defined as the sum of weights of all elements in the set. Our technique provides upper and lower bounds on a novel generalization of Rademacher complexity to the weighted setting in terms of the weighted set size. This generalizes Massart's Lemma, a known upper bound on the Rademacher complexity in terms of the unweighted set size.We show that the weighted Rademacher complexity can be estimated by solving a randomly perturbed optimization problem, allowing us to derive high-probability bounds on the size of any weighted set. We apply our method to the problems of calculating the partition function of an Ising model and computing propositional model counts (#SAT). Our experiments demonstrate that we can produce tighter bounds than competing methods in both the weighted and unweighted settings. Less

  • Learning a Neural Semantic Parser from User Feedback
    Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer ACL 2017

    We present an approach to rapidly and easily build natural language interfaces to databases for new domains, whose performance improves over time based on user feedback, and requires minimal intervention. To achieve this, we adapt neural sequence models to map utterances directly to SQL with its full expressivity, bypassing any intermediate meaning representations. These models are immediately deployed online to solicit feedback from real users to flag incorrect queries. Finally, the popularity of SQL facilitates gathering annotations for incorrect predictions using the crowd, which is directly used to improve our models. This complete feedback loop, without intermediate representations or database specific engineering, opens up new ways of building high quality semantic parsers. Experiments suggest that this approach can be deployed quickly for any new target domain, as we show by learning a semantic parser for an online academic database from scratch. Less

  • Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
    Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordóñez, Kai-Wei Chang EMNLP 2017

    Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively. Less

  • Automatic Selection of Context Configurations for Improved Class-SpecificWord Representations
    Ivan Vulic, Roy Schwartz, Ari Rappoport, Roi Reichart, and Anna Korhonen CoNLL 2017

    This paper is concerned with identifying contexts useful for training word representation models for different word classes such as adjectives (A), verbs (V), and nouns (N). We introduce a simple yet effective framework for an automatic selection of class-specific context configurations. We construct a context configuration space based on universal dependency relations between words, and efficiently search this space with an adapted beam search algorithm. In word similarity tasks for each word class, we show that our framework is both effective and efficient. Particularly, it improves the Spearman’s ρ correlation with human scores on SimLex-999 over the best previously proposed class-specific contexts by 6 (A), 6 (V) and 5 (N) ρ points. With our selected context configurations, we train on only 14% (A), 26.2% (V), and 33.6% (N) of all dependency-based contexts, resulting in a reduced training time. Our results generalise: we show that the configurations our algorithm learns for one English training setup outperform previously proposed context types in another training setup for English. Moreover, basing the configuration space on universal dependencies, it is possible to transfer the learned configurations to German and Italian. We also demonstrate improved per-class results over other context types in these two languages. Less

  • Crowdsourcing Multiple Choice Science Questions
    Johannes Welbl, Nelson F. Liu, and Matt Gardner Workshop on Noisy User-generated Text 2017

    We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions.1 We demonstrate that the method produces indomain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams. Less