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Abstract +Ai2

Deploying robots at scale demands robustness to the long tail of everyday situations. The countless variations
in scene layout, object geometry, and task specifications that characterize real environments are vast and
underrepresented in existing robot benchmarks. Measuring this level of generalization requires infrastructure
at a scale and diversity that physical evaluation alone cannot provide. We introduce MolmoSpaces, a fully
open ecosystem to support large-scale benchmarking of robot policies. MolmoSpaces consists of over 230k
diverse indoor environments, ranging from handcrafted household scenes to procedurally generated multiroom
houses, populated with 130k richly annotated object assets, including 48k manipulable objects with 42M stable
grasps. Crucially, these environments are simulator-agnostic, supporting popular options such as MuJoCo, Isaac,
and ManiSkill. The ecosystem supports the full spectrum of embodied tasks: static and mobile manipulation,
navigation, and multiroom long-horizon tasks requiring coordinated perception, planning, and interaction across
entire indoor environments. We also design MolmoSpaces-Bench, a benchmark suite of 8 tasks in which robots
interact with our diverse scenes and richly annotated objects. Our experiments show MolmoSpaces-Bench
exhibits strong sim-to-real correlation (R = 0.96, p = 0.98), confirm newer and stronger zero-shot policies
outperform earlier versions in our benchmarks, and identify key sensitivities to prompt phrasing, initial joint
positions, and camera occlusion. Through MolmoSpaces and its open-source assets and tooling, we provide a
foundation for scalable data generation, policy training, and benchmark creation for robot learning research.

1 Introduction

Recent advances in robot learning [1—4], have given rise to increasingly general, open-vocabulary policies, capable
of zero-shot deployment. As we work towards generalist robots, it becomes important to consider how to evaluate
and measure the performance of these policies. State-of-the-art models are already nearing saturated performance on
several established tasks, providing little signal to drive further progress [5]. Moreover, most manipulation benchmarks
frequently focus on short-horizon skills in a single scene, failing to probe the long-horizon, compositional challenges
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Figure 1 MolmoSpaces is an open ecosystem consisting of a large number of simulation environments, 3D articulated objects,
and tasks for training and evaluating robot navigation and manipulation at scale. It provides object metadata, grasps, and tooling to
generate training data, create benchmarks, and evaluate policies in a manner that correlates with real-world performance.

that arise in realistic environments [6—11].

The real world presents an extraordinarily long tail of situations a robot must handle. Kitchens vary in layout, lighting,
and clutter. Objects come in countless shapes, sizes, and materials. Instructions can be phrased in myriad ways. A
truly generalist policy must be robust to not just the common cases but to the vast combinatorial space of environments,
objects, and tasks that constitute everyday life. Estimating a policy’s ability to do so requires evaluating on a far broader
distribution of tasks, environments, and objects than ever before.

Simulation offers a compelling path to enable this level of rigor and scale in evaluation. Unlike physical experiments,
which are expensive, slow, and difficult to reproduce, simulation enables systematic assessment across thousands
of controlled scenarios. Rather than testing on a handful of cherry-picked scenarios, we can characterize policy
performance across the full distribution of environments a robot might encounter. However, effective simulation for
mobile manipulation must simultaneously support scene-scale diversity, physical realism, articulated interactions, and
long-horizon compositional tasks in realistic indoor environments. For simulation experiments to be useful, results
in simulation must attain strong correlation with real-world performance [12]. However, existing simulators and
benchmarks remain limited. Many provide only dozens of scenes or objects, lack realistic physics or visuals, or support
a narrow range of tasks.

We introduce MolmoSpaces, an end-to-end large-scale ecosystem for robotics research illustrated in Figure 1. Molmo-
Spaces unifies diverse scenes, objects, tasks, and tools for training and evaluating generalist robot policies. It contains
over 230k diverse indoor environments spanning a wide range of layouts and scene types, which enables evaluation
across the long tail of real-world spatial configurations. It also includes more than 130k high-quality rigid and articulated
object models with rich semantic and physical metadata, which supports assessment of generalization to novel objects.
In addition, MolmoSpaces provides over 42M annotated grasps across 48k interactive rigid and articulated objects,
which offers ground-truth supervision for grasp success evaluation. Our assets and scenes dataset can be loaded into
multiple simulators (MuJoCo [13], IsaacSim [14], and ManiSkill [15]), all backed by high-fidelity physics.

Using this ecosystem, we construct MolmoSpaces-Bench, a new benchmark suite that evaluates robot policies on 8
base tasks—navigate-to, pick, pick-and-place, pick-and-place-next-to, pick-and-place-color, open, close, and open-door
(Sec. 4.1)- in never-before-seen environments, all zero-shot (i.e. with no fine-tuning on benchmark data). Importantly,
the entire MolmoSpaces platform is open-source and extensible. This means that beyond the benchmarks we report,
researchers can leverage MolmoSpaces to synthesize their own datasets of scenes, objects, and tasks for training robust
robotic policies at scale. We hope that by providing a community-driven ecosystem of this scope, we will accelerate



Feature Molmo- Robo- Al2- Habitat iGibson RL- Behavior robo- Mani- OPTIMUS LIBERO Mimic-

Spaces Casa THOR 2.0 2.0 Bench 1K mimic Skill 2 Gen

Scenes 232k 120 - 1 15 1 50 3 - 4 20 1

Objects 130k 2509 3578 169 1217 28 9318 15 2144 72 - 40
Object Categories 2.8k 153 - 46 - 28 1949 - - - - -
Tasks 8 100 - 3 [§ 100 1000 8 20 10 130 12
Realistic Physics v v X X v v v v v v v v

Realistic Rendering ) v v v X X v X v M X X
Muli-Embodiment Vv v Vv X % X v X X v X v
Room-Scale Scenes v v v v v X v X X X X X
Multi-Room Scenes v X v v v X v X X X X X
Annotated Object Grasps v X X X X X X X X X X X
Mobile Manipulation Vv v Vv v % X Vv X Vv X X v
Scripted Datagen v v X X X v X Vv v v X v
Al-generated Tasks v v X X X X X X X X X X

Table 1 Comparison to popular simulation frameworks used in the robot learning literature. The definition of tasks varies strongly
across papers; many take it to be unique verb-object or category combinations.

progress toward truly general-purpose robotic intelligence.

In zero-shot evaluations (no task-specific fine-tuning), our benchmark distinguishes performance among several state-of-
the-art policies, including VLA models (7-models [1, 2, 16]) and classical modular baselines, across a wide range of
unseen environments and objects. The results reveal steady progress over model generations, but also expose brittleness
to distribution shifts. For instance, we find that minor changes in instruction phrasing or initial robot pose can cause
significant drops in success for some policies, especially earlier-generation VLAs. This sensitivity highlights the
importance of training on more diverse data, which MolmoSpaces can readily supply for future work. Encouragingly,
we observe a strong sim-to-real correlation: policies that score higher in our simulation benchmarks also achieve better
real-world success rates on equivalent tasks (with Pearson R? ~ 0.92 for object picking). This validates that high-fidelity
simulation can be a reliable proxy for real-world performance. Moreover, by systematically perturbing scene parameters
and sensor inputs in simulation, we pinpoint specific failure modes (e.g. dependence on certain camera viewpoints and
lighting conditions) that are costly to uncover with physical trials. These analyses demonstrate how an open ecosystem
like MolmoSpaces not only measures overall progress but also yields insights to drive algorithm improvement.

By dramatically expanding the scale of available simulated environments and making them openly accessible, Molmo-
Spaces enables researchers to measure generalization more rigorously than ever before and can support future work in
generating diverse training data for tackling the next generation of robotics problems.

2 Related work

Robot simulation frameworks provide scalable, safe, and repeatable platforms for rapid prototyping, policy learning,
and evaluation. Modern simulators such as MuJoCo, Isaac, and ManiSkill offer high-fidelity physics simulations
that support contact- and force-based manipulation [13—15, 17]. Building on these engines, the research community
has developed a range of simulation frameworks. Projects like AI2-THOR [18], Habitat, and Habitat-Lab [19, 20]
emphasize photorealistic visual navigation, but provide only limited manipulation support, often relying on “magic
grasps” that bypass realistic contact dynamics [18, 21]. RoboCasa and RoboCasa365 [22, 23] build on MuJoCo to
provide single-room environments, synthetic datasets, and task definitions for multi-task manipulation and navigation,
but remain limited in scene and asset diversity.

Large-scale datasets in robotics are increasingly important, as demonstrated by efforts such as Open X-Embodiment [24].
In parallel, the community has pursued data scaling through simulation. Objaverse [25] provides internet-scale 3D assets
compatible with simulators, while ProcTHOR expands AI2-THOR with tens of thousands of procedurally generated
multi-room houses [21]. Holodeck [26] introduces LLM-guided scene generation beyond household environments,
and InternScenes [27] combines real scans, procedural layouts, and designer-created environments to provide diverse
indoor scenes at scale. Despite addressing scene and asset scale, these datasets offer limited support for physics-based
manipulation and are primarily evaluated on navigation tasks. Conversely, GraspGen [28] provides large-scale grasp
annotations for Objaverse assets, but these remain at the asset level and require substantial effort to integrate into
interactive scenes.



By contrast, MolmoSpaces addresses both scale and task diversity through a ready-to-use ecosystem that unifies
230K scenes from AI2-THOR [18], ProcTHOR [21], and Holodeck [26], and makes them compatible across MuJoCo,
IsaacSim, and ManiSkill. The ecosystem further incorporates 130K object assets from Objaverse [25], with over 48K
objects annotated with grasp data and validated to be pickable and articulable under realistic physics. Together, these
components enable scalable, diverse, and physically grounded evaluation of navigation, manipulation, and mobile
manipulation policies. Comparisons between MolmoSpaces and prior work are summarized in Table 1.

Benchmarks are central to progress in robotics, providing standardized tasks and evaluation protocols for fair comparison,
reproducibility, and diagnosis of failure modes. However, real-world benchmarking remains difficult to scale due to
hardware heterogeneity, differences in sensing and control stacks, and the time and labor required for evaluation.
Recent efforts such as RobotArena [29] partially address these challenges through distributed, crowd-sourced evaluation,
while others like AutoEval [30] leverage success classifiers and reset policies to facilitate near-autonomous real-world
evaluations of specific tasks. However, real-world evaluation alone remains limited in the scale and diversity needed to
robustly assess generalist policies.

Simulation-based benchmarks offer a scalable and reproducible alternative, enabling controlled variation and system-
atic stress testing that are impractical in the real world. A wide range of benchmarks have emerged for manipulation [6, 8]
and navigation [18, 31, 32], becoming standard testbeds for evaluation. RoboVerse [33] unifies several of these bench-
marks under a shared framework. As policies converge on vision—language—action (VLA) models, recent benchmarks
such as LIBERO [6], CALVIN [7], LIBERO-Plus [9], LIBERO-Pro [10], VLABench [34], and RobotArena-Infinity [11]
expand evaluation to include language grounding and generalization. Additional works like the COLOSSEUM [35]
and VLATest [36] evaluate the robustness of generalist policies to changes in lighting, distractor objects, camera poses,
and more. Other efforts, including BEHAVIOR-1K [37], ManiSkill-HAB [38], and EmbodiedBench [39], extend
benchmarks to mobile manipulation, but remain biased toward household environments and limited in scene scale.

Sim-to-real benchmarks focus on providing simulation evaluations that match real-world results. SIMPLER [40] studies
distributional shifts by pairing simulated evaluations with real-robot rollouts, while PolaRiS [12] constructs digital twins
from real-world videos and demonstrates strong sim-to-real correlation across realistic scenes, albeit limited to tabletop
manipulation and partial environment reconstruction. Other works analyze large behavior models across simulated
and real environments, but rely on proprietary evaluation pipelines and closed datasets. Moreover, many sim-to-real
benchmarks require training on simulation data, limiting their ability to assess true zero-shot generalization [12, 37].

In contrast, our benchmark evaluates zero-shot generalist policies across navigation, manipulation, and mobile manipu-
lation tasks using a validation set of over 20K diverse indoor scenes—spanning both household and non-household
environments—and more than 22K interactable rigid and articulated objects. It supports large-scale distributional
analysis under controlled perturbations to scenes, objects, sensors, and language prompts, enabling rigorous assessment
of generalization and failure modes.

3 MolmoSpaces

MolmoSpaces contains:

1. MolmoSpaces-Scenes: Over 230k diverse indoor environments spanning a wide range of layouts and scene
types, enabling evaluation across the long tail of real-world spatial configurations.

2. MolmoSpaces-Objects: More than 130k high-quality rigid and articulated object models with rich semantic and
physical metadata, supporting assessment of generalization to novel objects.

3. MolmoSpaces-Grasp: Over 42M annotated grasps across 48k interactive rigid and articulated objects, providing
ground-truth supervision for grasp success evaluation.

4. MolmoSpaces-Bench: A benchmark suite comprising object-centric tasks across 8 task types, zero-shot evalua-
tions with no fine-tuning, and sim-to-real correlation analysis demonstrating that lessons learned in simulation
transfer to real-world performance.

5. Simulation Infrastructure: Scalable tooling for task composition, benchmark creation, and reproducible evalua-
tion.



Figure 2 Examples of diverse scene environments from MolmoSpaces-Scenes-MultiType with the Filament rendering engine. Our
ecosystem contains scenes from art studies, cat cafes, lounges, museums, and many other scenes, all pre-populated with objects to be

manipulated.

Dataset Name  Swb.  Lift  Inter.  Artic.

Dataset Scene Object Obj/ Creation MSCrafted 100.0 975 98.3 99.1
Name Count Set Scene Method MSProc 99.4 99.7 999 97.4

- MSProcObja 98.4 98.7  99.1 93.7
MSTwin 1 - 8 Manual MSMultiType 949 996 937 652
MSCrafted 120 THOR ~30 Hand-crafted
MSProc 12k THOR ~72 Heuristic Table 3 Scene datasets are all quality tested in the MuJoCo
MSProcObja 110k  THOR+ ~60 Heuristic simulator with high pass rates.

MSMultiType 110k THOR+ ~97 LLM Proc.

Dataset Name  MsCraft  MSProc  MSObja ~ MSMulti

Table 2 MolmoSpaces-Scenes contains five scene datasets with Stability test (%) 92.5 93.9 95.9 95.2
varying scene types, scales, objects, and creation methods.

Table 4 Isaac Sim simulator pass rates.

3.1 MolmoSpaces-Scenes

We provide five scene datasets, summarized in Table 2. The scenes were originally sourced from multiple datasets
in AI2-THOR: MolmoSpaces-Scenes-Crafted, MolmoSpaces-Scenes-MultiType, MolmoSpaces-Scenes-Procedural,
and MolmoSpaces-Scenes-Procedural-Obja. We process and tune these scenes to be physically realistic in MuJoCo,
ManiSkill, and IsaacSim. MolmoSpaces-Scenes-Crafted (MSCrafted) contains 120 hand-crafted single-room scenes
evenly distributed among kitchens, bedrooms, living rooms, and bathrooms, split into 48/48/24 train/validation/test
scenes, with object placement carefully curated to ensure physical stability. MolmoSpaces-Scenes-Procedural (MSProc)
provides 12k procedurally generated residential scenes with 10k/1k/1k train/validation/test splits, where each scene
represents a house with between one and ten rooms with layouts designed for realistic household navigation and
manipulation. MolmoSpaces-Scenes-Procedural-Obja (MSProcObja) extends this with 110k train/validation scenes
containing both THOR and Objaverse objects. MolmoSpaces-Scenes-MultiType (MSMultiType) provides 110k di-
verse scene types generated via LLM-based procedural generation, also with THOR and Objaverse objects. Finally,
MolmoSpaces-Scenes-DigitalTwin (MSTwin) is a high-fidelity manual reconstruction of our real-world kitchen. All
datasets contain both rigid and articulated objects. Some examples of these scenes are shown in Figure 2.

To generate MSMultiType, we extend the diverse scene generation pipline presented in Holodeck [26]. We select and
extend indoor scene types in the SUN database [41], based on the suitability to the available THOR and Objaverse
object taxonomy, and reorganize them into a hierarchy with between five and fifteen concrete scene types for each of ten
generic types. In total, 546 room types (including many scene-specific) and 101 scene types are available for scene
sampling (Fig. 17 left, in the appendix). Each scene specification contains a generic or concrete scene type and between
one and ten rooms of diverse types. We also sample from a subset of 52k persona descriptions from [42] — chosen by
their suitability to produce visual and stylistic differences in objects, materials, or layout constraint selection — and
accentuate some particular style in 90% of the scene specifications, which are finally converted to text prompts for LLM
scene generation. We add a ‘grid’ constraint to the DFS-based object placement optimizer in Holodeck to simplify the



Figure 3 An example scene rendered across different simulators: MuJoCo, Issac Sim, and ManiSkill. When using MuJoCo, the
scenes can be rendered using either the OpenGL renderer (Classic) or with Filament (Filament).

uniform placement of objects in available free space commonly occurring in non-residential scenes.

In order to enable the wide-spread use of our simulation assets, we also release them converted to the USD format, which
can be natively loaded in IsaacSim. Additionally, we provide both an asset and scene loader for ManiSkill. Figure 3
illustrates the same scene rendered across aforementioned simulators and their respective rendering engines. Finally, we
generate occupancy maps for all scenes to identify collision-free starting poses for robots, ensuring safe initialization for
both manipulation and navigation experiments.

Scene quality testing: For an environment to be suitable for both navigation and manipulation tasks, objects must
remain physically stable, respond appropriately to applied forces, and be accessible for interaction. Specifically, objects
should not drift or randomly move, rigid objects must be pick-upable, articulated objects must allow motion across their
defined ranges, and masses, friction, and other physical parameters should yield realistic dynamics under standard forces.
Ensuring these properties is particularly important when integrating assets not originally designed for physics-based
simulation. Additionally, objects that are originally designed for such simulations often have innately incompatible
parameters by default which also warrant additional tuning for integration.

To systematically enforce these conditions, we implemented four tests addressing different aspects of physical validity:
scene stability, object intersections, rigid object liftability, and articulation of movable objects. First, each scene was
settled by simulating approximately 20 seconds and then saved with the updated, settled poses. Stability tests simulate
the environment for multiple steps after settling and remove any objects that continue to jitter. Intersection tests detect
colliding objects: if a collision occurs between a fixed and a free object, the free object is removed; if the collision is
between two free objects, the smaller one is removed. Lift tests apply upward forces to all free objects and measure their
displacement along the z-axis; objects that cannot be lifted by at least 5 cm and are detected inside another object’s site
are removed. Articulation tests apply forces at joints to open or close articulated objects; if an object cannot be actuated
through at least 70% of its joint range, free objects located within its articulation site or blocking its motion are removed

Across MuJoCo scenes (Table 3), over 95% of environments pass these stability and manipulation checks. The lowest
success rate is observed for articulation tests on the MSMultiType scene dataset (63%). We note that these scenes were
designed to maximize navigability by biasing large object placement to prevent blocking door-to-door navigation while
ensuring many small objects can be accessibly placed for manipulation tasks. Manual inspection confirms that most
failures arise from scene layout rather than limitations of the simulation engine. We additionally evaluated a subset of
scenes in Isaac Sim, observing consistently high pass rates as shown in Table 4, which demonstrates the robustness and
cross-platform validity of our validation pipeline.

3.2 MolmoSpaces-Objects

We provide two object model datasets consisting of 1.6k THOR and 129k Objaverse objects, with samples shown in
Figure 4. These assets populate the generated scenes described in Section 3.1. Table 5 reports the average number of
objects per scene for each dataset. To ensure physical realism, rigid objects were validated by estimating mass and
density against LLM-estimated values, and articulable objects were tuned by manipulating them via teleoperation of
a simulated Franka FR3 robot. Collider meshes were generated using COACD [43], with primitive colliders human
annotated for all THOR assets. For stability, receptacle objects primarily use primitive colliders, while manipulable
objects use convex decomposition except for very small or thin items, where primitives are preferred. Meshes in



Dataset Total Pickupable Non-Pick Articulated THOR Objaverse

MSCrafted ~ ~30 ~14 ~T ~9 ~23 -
MSProc ~T2 ~34 ~31 ~T ~41 -
MSProcObja ~ ~105  ~47 ~50 ~T ~T2 32
MSMultiType ~150 ~61 ~TT ~12 ~T3 T

Table 5 Average number of objects per scene on each dataset

Figure 4 A random sampling of object types in our ecosystem, with different sizes, shapes, and articulations. These examples are
rendered with Filament.

Objaverse models were further processed and decimated for simulation efficiency [44].

THOR objects span 134 categories, with 22 articulable categories (e.g., doors, refrigerators) annotated with joint types,
axes, positions, and ranges. Objaverse objects, spanning almost 2.8k WordNet [45, 46] synsets, are curated from 625k
models annotated with descriptions, mass estimates, canonical poses, pickable and receptacle properties, synsets, and
scale estimates generated by GPT-4o [47, 48]. A complementary GPT-4.1 [49] annotation identified object counts,
extraneous or missing geometry, texture quality, and receptacle presence in models with parseable annotation. Filtering
provided 129k single-object models that met scale consistency, sufficient texture quality, cross-renderer fidelity, compact
file size, collider quality, and synset coverage as objects to be placed in MSMultiType scenes. Additional filtering
was done for MSProcObja to keep only objects with synsets heuristically mapped to placement-compatible THOR
categories, resulting in 92k objects across 2k synsets. Further details in filtering and curating objects from Objaverse are
described in Appendix A.

Object models are accompanied by extensive physical and semantic metadata, convex colliders, and canonical coordinate
definitions, besides grasps, which are obtained as described below. To support easy integration into robotics simulation
workflows, all object models are provided in formats compatible with MuJoCo, IsaacSim, and ManiSkill.

3.3 MolmoSpaces-Grasp

We introduce a comprehensive grasp dataset, MolmoSpaces-Grasp, consisting of over 42 million grasps that cover
objects in MolmoSpaces scenes. Our dataset provides 6-DoF grasp poses for two types of manipulable objects: rigid
objects, which can be picked and moved as single bodies, and articulable objects, whose constituent parts can move
relative to one another via a revolute or prismatic joint. Our grasp generation process builds on prior work such as
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Figure 5 Our grasp generation pipeline consists of separate streams for rigid and articulated assets. We generate 42M+ verified
grasps that can be utilized to create scripted interaction policies. Grasps can be used in different simulation environments, with an
Issac example shown on the right.

GraspGen [28], 6-DOF GraspNet [50] and ACRONYM [51], with extensions to support articulable objects through
a new functionality-based evaluation step. We apply this pipeline to 48,111 objects drawn from a curated subset of
Objaverse and custom-designed THOR assets, using separate pipelines for rigid and articulated objects to reflect their
distinct manipulation requirements.

Grasp generation: Our pipeline (Figure 5) begins with 3D object models, from which we extract mesh colliders for
grasp sampling. Antipodal contact pairs are sampled based on the geometry of the Robotiq 2F-85 gripper and the object.
For rigid objects, sampling is performed across the full mesh surface, whereas for articulated objects, it is restricted to
leaf components corresponding to handles or other functional interaction points. Grasps that result in collisions with
non-leaf geometry are immediately discarded.

From the initial samples, we select up to 1,000 diverse and robust grasps per object. To ensure diversity, sampled grasps
are clustered in the full 6-DoF pose space and tested uniformly across clusters. Grasp robustness is evaluated differently
depending on the object type. For rigid objects, we apply controlled linear and rotational perturbations to the gripper
upon grasping and discard any grasp that fails to maintain contact, leading to object slippage. For articulated objects, we
define a grasp robustness by its actuation feasibility, meaning it can actuate the relevant joint through at least 70% of its
valid range in both directions, while maintaining stable contact.

To evaluate the practical utility of annotated grasps in MolmoSpaces scenes, we perform in-situ tests using a floating
Robotiq 2F-85 gripper. Candidate grasps that collide with scene geometry are discarded, with collision checks performed
at the pre-grasp pose (4 cm offset along the gripper’s negative local z-axis), grasp pose, and along the execution trajectory.
The gripper then executes the pre-grasp and grasp motions, followed by lifting the object or articulating its moving part
along the object’s joint path. Success rates (Fig. 24 in Appendix) are reported only for grasps that pass all collision
checks and complete the intended motion.

Initial evaluations showed that objects placed on surfaces often had few viable, non-colliding grasps. This is because
grasp generation is performed on isolated objects without surrounding geometry and ignores gravity, resulting in high
failure rates due to slippage during in-situ testing. To mitigate this, we updated the pipeline to generate more robust and
stable grasps by biasing contacts toward the center of the fingertips as illustrated in Figure 6 . For small or thin objects,
such as forks and pens, fingertip-edge contacts are preferred.

Remaining failures are largely due to scene- and object-level constraints: for lifting, common issues include objects too
large for the lift pose, confined spaces limiting vertical clearance, collisions along the execution trajectory, and object
slippage through the grasp; for articulated objects, failures occur when the object lifts instead of actuating, collisions
exists along the articulation path, obstacles block articulation, or the gripper misaligns with the handle. These results
underscore the importance of in-situ evaluation for producing grasps that are functional and practically useful given the
way objects contextually exist within the scene.
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Figure 7 Code Structure with modular experiment composition.

platforms. We categorize these platforms as static or mobile, and single-arm or bimanual. To handle all of these
cases, we provide a Franka FR3 arm with three gripper configurations (Franka Hand, RobotlQ 2F-85, and CAP) as
a static manipulator, Rainbow RB-Y1 as a bimanual and holonomic mobile manipulator, and floating CAP [52] and
RobotlQ grippers, unconnected to arms, so without kinematic limits. The Franka FR3 with the RobotIQ 2F-85 gripper
is specifically set up as a DROID [53] system, with corresponding cameras with the correct intrinsics and extrinsics.
The Franka FR3, RobotIQ Gripper, and Rainbow RB-Y'1 robot models were sourced from [54].

Robot Control: For manipulators, our framework provides for both absolute and relative joint position commands,
which are tracked internally with a gravity-compensated joint-space stiffness controller. Mobile platforms, such as the
holonomic RB-Y1 base or 6DoF floating CAP, can be controlled via absolute or relative poses.

Kinematics Computation: We provide built-in forward and inverse kinematics solvers for each robot, and the modular
nature of our framework makes it easy to further extend for new robots. Our parallelized inverse-kinematics solver
is written in JAX, and leverages Levenberg-Marquadt optimization with null-space control for posture regularization.
This solver can natively be GPU-accelerated, but even on a CPU can solve batches as large as 256 samples with high
precision in ~200ms. For the RB-Y'1 robot, which is configured for use with the cuRobo[55] motion generator, we
provide forward and inverse kinematics as a wrapper around cuRobo’s functionality.

3.5 Modular experiment composition

MolmoSpaces supports modular experiment composition by flexibly combining scenes, tasks, robots, and camera
configurations, as illustrated in the Figure 7. We provide camera setups for commonly used RealSense, ZED, and GoPro
cameras. Beyond vision inputs—including calibrated multi-view RGB and optional depth cameras with object image
points—the framework exposes rich proprioceptive signals (e.g., joint states, end-effector and base poses), task-state
information (object and articulation states), as well as task annotations, planner signals, and action histories. Together,
these sensors capture the full interaction context.

3.6 Data collection

Two different modes of data collection are possible. Manual data collection is possible using TeleDex [56] iPhone app,
which uses i0OS ARKit to stream the phone’s pose. In addition to this, leveraging the pre-computed grasps, it would be
possible for scripted policies to control the robot to solve the defined tasks.
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Figure 8 Example images of our range of tasks, spanning from manipulation of articulated and non-articulated assets to navigation
and long-horizon tasks, shown together with their associated text instructions. These examples are from the MuJoCo simulator.

4 Benchmark

To enable rigorous and reproducible evaluation of robot policies, we introduce MolmoSpaces-Bench, which spans eight
base tasks across navigation, manipulation, and mobile manipulation. These benchmarks are designed with explicit
diversity requirements across scenes, object categories, and robot configurations, with each trial verified for solvability.

4.1 Tasks

Leveraging the diverse scenes, assets, and robots provided by MolmoSpaces, we introduce a suite of tasks and
corresponding benchmarks designed for comprehensive policy evaluation. We define eight base tasks: navigate-to, pick,
pick-and-place, pick-and-place-next-to, pick-and-place-color, open, close, and open-door. For each of these tasks, we
also provide a well-defined success condition and a dense reward function.

1. Navigate-to: A policy must search for and navigate to a specified target object. The robot is initialized between 4
and 20 meters away from the target object, possibly in an entirely different room. The success conditions require
the object to be visible from the robot’s head camera and closer than 1.5 meters away. We sample the same object
candidate set as [57].

2. Pick: Grasp and lift a specified object from its initial location by at least lcm.

3. Pick-and-place: Move a target object to be into or onto a target receptacle. To be counted as successful, at least
50% of the object’s weight must be vertically supported by the receptacle. Additionally, the target receptacle
cannot have been displaced by more than 10 cm or 45 ° from its initial pose.

4. Pick-and-place-color: Similar to pick-and-place, with the same initialization and success conditions. However,
the task is complicated by multiple duplicates of the target receptacle differentiated only by color. This color is
included in the task prompt, requiring policies to attend to and follow specific task instructions.

5. Pick-and-place-next-to: Move a target object to be next to a target receptacle. The target receptacle is initialized
30-50 cm away from the target object, and to be successful, the policy must move the object to be closer than 5
cm surface-to-surface from the target receptacle. The object must additionally be on the same support surface
(e.g., table) as the receptacle, which cannot have been displaced by more than 5 cm or 45° from its initial pose.

6. Open: Open an articulated household fixture such as a drawer, cabinet, microwave, or fridge. Starting fully closed,
the robot must open the fixture by at least 15%.

7. Close: Close an articulated household fixture, which is initialized halfway open. To succeed, the policy must
close the fixture to at most 15% open or 85% closed.

8. Open-door: Open a hinged door by manipulating its handle or surface. The door starts fully closed, and the
policy is tasked with opening it by at least 67%.
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Navigation The navigate-to task is evaluated with the Rainbow RB-Y 1, which is instructed to locate and navigate
to a given object. Following [57], the robot is initialized 4-20m away from the target object, and success is defined as
being closer than 1.5m to the target object with it clearly visible in the navigation camera. For this task, policies must
explicitly signal task completion, and incorrectly doing so is counted as a failure.

Rigid-body manipulation Non-articulated manipulation includes the pick, pick-and-place, pick-and-place-color,
and pick-and-place-next-to tasks, which are evaluated with a Franka FR3 robot in the DROID configuration. For
pick, the robot must grasp and lift an object by at least 1cm. For pick-and-place, the robot must move an object into
or on a target receptacle, while pick-and-place-next-to requires the robot to place the object next to the receptacle.
The pick-and-place-color task is a variant of pick-and-place with multiple similar but differently-colored receptacles,
requiring policies to attend and adhere to specific task instructions.

Articulated manipulation Our three articulated manipulation tasks cover both static and mobile manipulation.The
open and close tasks are static manipulation tasks evaluated with the FR3 in the DROID setup, where the robot must
open or close a variety of articulated household fixtures, including cabinets, drawers, refrigerators, and microwaves, by
at least 15%.The open-door task is a mobile articulated manipulation task, where an RB-Y1 robot must push or pull a
door to be at least 67% open, requiring coordinated mobility and manipulation across many degrees of freedom.

Specifically, we evaluate following models:

1. Pl models (manipulation). We evaluate generalist models from the PI family, namely 7y, mo-FAST, and 7y 5. As
these models are trained primarily on real-world data, this setting constitutes a real-to-simulation evaluation. We
follow the DROID hardware setup for this set of evaluations.

2. CAP models (manipulation). We evaluate CAP models that are task-specific and available for the following
tasks: pick, open, and close. The models are conditioned on 3D “contact” points, which are provided by using
Gemini-Robotics-ER-1.5 [58] at the initial step of the episode. We use the custom gripper design that CAP
policies are trained with to replace the Robotiq Gripper from the DROID setup.

3. RING model (navigation). RING is an embodiment-agnostic indoor navigation policy trained entirely in simulation
using large-scale randomization over robot body geometry and sensor configurations.

4. DualVLN (navigation). Dual VLN is a dual-system VLN foundation model that separates high-level reasoning
from low-level control: a VLM-based global planner predicts mid-term waypoint goals, with a lightweight
diffusion-based policy that executes smooth, real-time trajectories conditioned on these goals.

4.2 Benchmark creation

For every task, we provide one or more benchmarks designed for comprehensive policy evaluation. These benchmarks
draw from multiple scene datasets, described in Sec. 3.1, and provide varying levels of difficulty and complexity.
Concretely, each benchmark is defined by an initial scene, robot, and camera configuration, as well as a descriptive
task instruction. To ensure benchmark quality, we perform balancing to maximize diversity of object categories and
instances, as well as scenes. Additionally, each of our provided benchmarks are guaranteed to be solvable with the
provided robot and initial conditions, ensuring task feasibility.

We generate a full set of benchmarks with all combinations of environments and tasks, listed in Table 6. For easier
comparisons, we also include preferred evaluation configurations. For the open and close tasks, we choose the MSCrafted
scenes, as these contain handcrafted kitchens with many cabinets and drawers. For most manipulation tasks, we choose
the MSProcObj variants, as the presence of objaverse assets gives object diversity. For the door-opening task, we use the
MSProc environment, as object diversity is irrelevant. All tasks have 2k samples. We present select benchmark results
in Sec. 5.1.

4.3 Extensions

Controlled variants of benchmarks enable easier testing of hypotheses. For example, to answer the question “Does
a policy perform as well on open vocabulary navigation as on closed vocabulary navigation?", one can evaluate on
MSProc, which uses a closed set of object categories, versus MSMultiType, which supports open vocabulary. In addition
to this, MolmoSpaces also allows for the easy creation of controlled adversarial benchmarks to test specific functionality,
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Task MSCrafted MSProc MSProcObj MSMultiType

Open (Franka) /+e v v v
Close (Franka) v/ +e v v v
Pick (Franka) v v +e v v
Pick & Place (Franka) v v +e v v
Pick & Place Next To (Franka) v v v v
Door Open (RBY1) v v v v
Pick (RBY1) v v v v
Pick & Place (RBY1) v v v v
Navigation (RBY1) v v

Table 6 Availability of manipulation and navigation benchmarks across environments. v~ indicates the benchmark is available, +e
indicates there is an easy variant of the benchmark, /indicates the preferred evaluation environemnt.

such as the ability of a policy to handle varying initial robot configurations (shown in Fig. 12) or the ability to do
manipulation in progressively more cluttered environments.

Additionally, while our provided benchmarks cover a variety of short-horizon tasks, long-horizon evaluation is also
a critically important aspect of benchmarking. To that end, we provide an LLLM-based task generation system that
can generate long-horizon tasks with more abstract task descriptions. In this process, shown in Fig. 9, we take an
existing scene and prompt an LLM to generate feasible long-horizon tasks, defined by a high-level task description and
a sequence of base tasks as defined in Sec. 4.1. Unlike the base tasks, the tasks obtained by this sampling procedure can
result in longer horizons, e.g., needing to open a fridge before taking objects out and placing them elsewhere.

A o Parse Output & Convert to MultiTask Reward
position, L .
j— bounding box, reward = sum(task_definitions[output[i]])
relations, |

ARel\jetc. ———» Prompt “Make a salad”

Task Pick_Place(Tomato, Bowl),

- Open(Refrigerator),
E— g:g'ée_’ Pick_Place(Lettuce, Bowl),
o——- open,’ .

JERE] close A

Figure 9 The LLM-based long-horizon task generation system makes use of text-form scene descriptions to generate new task
descriptions and success condition checks based on predefined atomic checks.

5 Experiments

5.1 Evaluations

We use MolmoSpaces-Bench to evaluate open-source manipulation and navigation policies across the diverse scenes of
MolmoSpaces zero-shot, without task-specific fine-tuning as done in many prior evaluations. We believe this setting is
more practical, as it evaluates models as they are released and intended to be used, rather than their ability to efficiently
fit additional task-specific data. We report the results under the standard settings in in Fig. 10.

5.1.1 Manipulation tasks

We evaluate vision—language—action (VLA) models from the 7 family [1, 2, 16] (g, m9-FAST, and 7 5, specifically the
joint position variants that have been fine-tuned on the DROID dataset [12]) as well as utility contact-action models from
CAP [52]. These models make use of different setups as described in Sec. 3.4, and therefore operate under different
sensing and embodiment constraints. In particular, the DROID setup provides the 7 models with two camera views,
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Figure 10 Zero-shot success rates of different baseline policies across five MolmoSpaces benchmark tasks. Showing expected
performance improvement in improved policies. Error bars show 95% Bayesian credible intervals.

Pick Open Close
€ 100
: o
e 80 @ @
g | T
S 60 i
2 o2 ®
o 40 s
° }
e 20 _ é) _ _
= R=0.96 [0.92, 0.98] R=0.85 [0.57, 0.99] R=0.97 [0.62, 1.00]
é i 0=1.00[0.93, 1.00] £=0.40 [0.20, 1.00] 0=1.00 [0.20, 1.00]
[}]
14 0% 20% 40% 60% 80% 0% 20% 40% 60% 80% 0% 20% 40% 60% 80%
Benchmark Performance Benchmark Performance Benchmark Performance
CAP Policies Tt Policies Other
B CAP [OCAP-EC1 OCAP-EC2 mCAP-EC3 Om-0 Mm-0Fast Om-0.5 @ Paligemma Binning

Figure 11 Sim-to-real correlation results for pick, open, and close task. Coefficient of determination (R) and the Spearman rank
correlation coefficient (p) are shown.

whereas the floating CAP setup uses a single wrist-mounted camera and has no kinematic constraints. During benchmark
construction, we ensure that all manipulation tasks are feasible under the DROID setup.

5.1.2 Navigation Tasks

We select two state-of-the-art prior methods for visual object-goal navigation. RING [59] is an embodiment-agnostic,
transformer-based navigation policy trained entirely in simulation that demonstrates robust generalization across a wide
range of real-world robot platforms. It is trained on semantic navigation tasks where instructions consist of a simple
verb (e.g., “go to", “locate”, “find", “search for", “navigate to") paired with an object category. Dual VLN [60] is a
dual-system vision—language navigation (VLN) foundation model that integrates high-level reasoning with low-level
action execution. Unlike RING, Dual VLN is trained on detailed instructions that specify intermediate steps the robot
must follow, rather than simple semantic goals (see Fig. 4 of [60] for examples). Both policies are evaluated on the
navigate-to benchmark, which comprises 2,000 trajectories across 679 houses and goal objects drawn from 568 synset
categories. This difference in task formulation explains the performance gap between policies (see Fig. 10), as our
benchmark’s semantic navigation format poses a distributional mismatch for Dual VLN while aligning with RING’s
training. We adopt semantic navigation because it is more directly compatible with downstream mobile manipulation
tasks.

5.2 Sim-to-Real Correlation

Correlation between performance in real and simulated evaluations shows how predictive simulation results are of
real world behavior. We therefore compare the results achieved by policies in our benchmarks to their real-world
performance, which we take from RoboArena [29] and CAP [52]. We evaluate the correlation for the pick, open, and
close tasks individually. Results for are shown in Fig. 11. For the pick task, we observe a strong linear correlation
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between our MolmoSpaces-Bench results and the results from 752 RoboArena pick tasks, with Pearson and Spearman
rank correlation coefficients of 0.96 and 0.98, respectively. This underlines MolmoSpaces-Bench’s utility and predictive
power. As in the Pick task, we compute correlations between benchmark success rates and real-world performance
measured on RoboArena and CAP for the open and close tasks. While fewer real-world episodes are available for these
tasks, we observe consistent positive correlations but with bigger error bars.

5.3 Distributional Evaluations

Machine learning models typically perform best under small distribution shifts between training and evaluation. Given
that the 7 series models are trained on datasets that include DROID [53], we evaluate how performance degrades as
we move away from this distribution. This evaluation is enabled by the scale of MolmoSpaces, which allows us to
systematically vary environmental and policy factors beyond aggregate success metrics.

To probe language-induced distribution shift, we vary the pick task prompt using verb sequences of increasing frequency
in DROID instructions, as shown in Figure 13. When using phrasing that are more frequent in the DROID dataset, 7
achieves a success rate within 1% of 7y 5, compared to a 14% gap otherwise. With the assumption that the underlying
DROID data distributions used to fine-tune 7 models are similar, this sensitivity to prompt phrasing suggests that
generalization limitations of earlier 7 models arise from the language-conditioning component rather than the action
heads. We observe this effect for the pick task in our benchmark and leave validation of its generality in other tasks to
future work.

A similar degradation is observed when perturbing the initial joint positions of the 7y 5 policy from the default
configuration used in DROID. As shown in Figure 12, varying the starting joint positions away from this default leads to
a decline in performance. In contrast, varying the lighting intensity has little effect on performance, likely because such
visual distribution shifts are mitigated through image-based data augmentation.

Figure 12 also illustrates the effect of other environmental perturbations on the performance of policies. In particular,
occluding the wrist camera reduces 7 5 success rate to 2%, while occluding the third-person camera only lowers the
performance to 20%, indicating a strong reliance on wrist-mounted visual input. Similarly, CAP’s performance indicates
a strong reliance on a good starting conditioning point. Figure 15 shows that 7 5 and CAP prefer different grasping
approaches, with 7y 5 favoring top-down grasps and CAP favoring side grasps. This preference helps explain why 7 5
performs better on objects with top openings, such as mugs and bowls, while CAP performs better than 7 5 on objects
where side grasps are feasible, such as bottles and apples, as shown in Figure 14.

*The real-world performance is obtained from RoboArena by filtering for pick tasks and using RoboArena’s partial success criteria.
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5.4 Controlled Policy Comparison

To ensure a fair comparison between policies, we use a Franka FR3 arm setup as a unified embodiment for all
manipulation benchmarks, alongside two RGB-D cameras: one wrist-mounted and one third-person. We allow a fixed
offset in the robot base frame relative to the initial task configuration to accommodate grippers with differing geometries.
This offset must be constant across episodes and should not use any privileged or task-specific information. During
task generation, we filter out benchmark tasks that are not physically achievable under the standard DROID setup. We
acknowledge that this filtering procedure may advantage grippers such as the RobotIQ 2F-85. We also acknowledge that
the choice of end-effector can affect task difficulty, but consider this a part of system design to be evaluated.

Another variable that affects our recorded policies performance is the task horizon, which we set as 300 for the m models,
and 50 for CAP. Figure 16 compares oracle termination with fixed-horizon termination of the m models, showing that
policies sometimes reach a successful state but subsequently undo it before the episode ends. This behavior is also
reflected in Table 7, where on average m( 5 goes through 2.65 grasp-ungrasp transitions before exceeding the reward
threshold in successful episodes, while 7y makes 4.63 such transitions. These results suggest that 7 models benefit from
sufficient time to retry actions, whereas CAP relies on VLM-based supervision for retries that is not used in our baseline

benchmark experiments.
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Table 7 Average number of grasp-ungrasp transitions before task success for 7 policies on the pick task.

Policy Mean £ Std  Median

-0 4.63 + 5.26 3.0
m-0 Fast  2.02 4+ 2.62 1.0
m-0.5 2.65 +£2.74 1.0

6 Conclusion

We present MolmoSpaces, a comprehensive open ecosystem comprising large-scale simulation environments, diverse
object assets, and extensive grasp datasets. We further introduce MolmoSpaces-Bench, a benchmark suite spanning base
skills and LLM-assisted long-horizon tasks, with controlled difficulty and perturbations that enable detailed analysis
and principled comparison of generalist robot policies. We validate MolmoSpaces-Bench’s utility with thorough
experimentation, demonstrating strong sim-to-real correlation and benchmarking multiple SOTA policies, including
distributional evaluations that reveal subtle policy behavior characteristics. Although simulation remains inherently
imperfect, well-designed simulation benchmarks provide a critical foundation for evaluating robotic policies and guiding
progress toward robust real-world performance. In the future, we plan to support data generation and reinforcement
learning for robot policies at scale, enabling us to further study scaling behaviors for robot foundation models.
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Appendix
A Object Model Dataset Details

~110k MolmoSpaces-Scenes-MultiType scene specifications ~129k Objaverse objects

Figure 17 Scene specification distribution (left) —with generic and concrete scene types and room types— used to generate
MolmoSpaces-Scenes-MultiType scenes. Between one and ten rooms of mostly scene-specific room types (here shown aggregated
per generic scene type) are chosen to prompt LLMs. Right, distribution of WordNet synsets grouped by higher-level object categories
in our curated subset of Objaverse.

We provide models from both AI2-THOR and Objaverse. We extracted and converted objects from AI2-THOR
and migrated them into a file format compatible with MuJoCo as well as other simulators such as ManiSkill and
IsaacSim. In total, we converted 1.6k rigid object instances across 134 categories into MuJoCo. In addition, there are 22
categories—including doors, refrigerators, and dressers—that were made articulable by annotating joint information,
including joint type (slide or hinge), joint axis, joint position, and joint range.

To ensure physical realism for robot manipulation tasks, we performed several validation steps. For rigid objects, we
verified that mass and density values were realistic by comparing simulated values with estimates annotated via large
language models (LLMs), adjusting density as needed. For articulable objects, we created a teleoperation suite to
manually tune the physical properties of joints and the density of movable parts. This was performed using a simulated
Franka FR3 robot, which itself was tuned through system identification: real robot trajectories of picking and pushing
cubes of known weights were collected, and simulation parameters were optimized to match the observed motions.
These physics parameters were then applied to all objects during scene generation.

Collider meshes for all objects were generated using COACD [43] , and we also annotated primitive colliders for
all THOR objects. For physics stability, rigid objects with receptacles (e.g., tables, dressers) primarily use primitive
colliders to avoid mesh-mesh contact issues. Manipulable objects require higher fidelity, so convex decomposition
was used; however, for very small and thin objects, primitive colliders were employed to maintain simulation stability.
Meshes were further processed and decimated to improve simulation performance.

In addition to AI2-THOR objects, we converted a curated selection of Objaverse objects into the MJCF format for
MuJoCo. This required a careful curation methodology to ensure quality and compatibility, which follows multiple
filtering stages applied on top of an initial subset of 625k Objaverse objects pre-filtered with their original metadata,
which are (1) converted to a format compatible with AI2-THOR [18, 44] and (2) annotated with VLM-generated [48]
descriptions, estimated mass, canonical poses, pickable/receptacle properties, matching Wordnet synsets [45, 46], and
scale estimates obtained via prompting with renderings from different viewpoints.

The automatic process results in some malformed or unreliable annotations, which prompts us to perform a complemen-
tary GPT-4.1 annotation (LLM prompt listed in Fig. 20) to determine (1) the type and number of object instances in
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each model file, (2) the presence of props or other excessive geometry not part of the main object in the model file, (3)
missing geometry, which typically occurs with scans of real-world objects, (4) a texture quality score on a 0-9 scale, and
(5) whether the model contains receptacle parts. While we seek extraction of very specific information to help filter
objects towards usability for embodied agent training, we note other efforts in re-annotating Objaverse like [61].

To provide a subset of objects suitable for LLM-backed scene generation, we sequentially apply filtering stages to ensure
(1) metadata completeness and synset validity, (2) presence of a single object in the model file, (3) statistical scale
inliers using a restrictive Tukey rule on the IQR of the log-scale, (4) sufficient texture quality with annotated score 4 or
higher, (5) cross—renderer fidelity with CLIP [62-64] similarity score 0.6 or higher, (6) processed model file size with
compressed geometry and colliders less than 1.5 MB, (7) agreement on the receptacle property in both annotations, (8)
watertight colliders with at least 80% of the horizontal surface for receptacle objects, and (9) final removal of singleton
representatives of synsets. The resulting distribution of curated objects, corresponding to almost 2.8k different WordNet
synsets, is illustrated by Fig. 17 (right). The count of nearly 129k curated objects, which more than doubles the available
amount in prior work on LLM-backed scene generation [26], is finally divided into train (80%), validation (10%), and
test (10%) splits.

We further extend the filtering stages to provide compatibility with procedural house generation via ProcTHOR [21]
relying on annotated placement options (prompt used with GPT-4o listed in Fig. 22). Rather than generating new
placement options for all synsets, we rely on the already diverse set of THOR object categories and map each synset to
the most relevant THOR category, if any, using scale and semantic similarity-based heuristics. In more detail, for each
candidate pairing, we compute a weighted dissimilarity score based on room-type compatibility, feasible placement
locations, object scale ranges, boolean affordances, and calibrated WordNet semantic similarity. Candidate matches
are filtered using hard constraints on room and scale compatibility, followed by a lightweight reranking stage that
emphasizes semantic alignment. Each synset is assigned to the lowest-cost THOR category below a fixed threshold,
yielding a robust many-to-one alignment suitable for downstream scene generation. We then let the procedural engine
sample objects from any synset associated with the currently selected THOR category. Using these heuristic placement
reference assignments, the additional filtering stages ensure that objects (1) have synsets with valid placement references,
(2) have annotated pickable/receptacle properties compatible with those of the placement reference, (3) have bounding
box scales suitable for placement in houses, (4) are sufficiently shallow if wall-placeable, (5) have synsets that are not
hyponyms of weapons, and (6) have synsets present in the train split. The result of applying these additional filters is a
curated subset of 92.5k objects, corresponding to ~2k synsets.

For all objects, we provide an extensive metadata collection that includes the physical parameters of scale and mass
as well as semantic information: name, category, and synsets. To enable the easy use of these models in robotics
simulations, we also provide convex meshes and grasps. In addition to this, we make sure that these objects are defined
in a canonical coordinate system to make them easily loadable into scenes.

B MolmoSpaces-Scenes-MultiType Generation Details

Grid layout placement option As mentioned in Sec. 3.1, we extend the original DFS-based floor object solver in
Holodeck [26] with a ‘grid’ global constraint that enables structured batch placement of multiple objects suitable for
several non-residential MSMultiType scene types. Objects to be placed with a grid constraint are handled jointly: the
solver enumerates feasible grid shapes (rows x columns) that can accommodate an iteratively decreasing object set
—starting with the original object count requested by the LLM-, prioritizing compact layouts. For each candidate grid
shape, the solver attempts to place the entire grid footprint within the current room and greedily assigns objects to grid
cells by selecting positions and rotations that maximize satisfaction of remaining (non-grid) constraints regarding already
placed objects. Grid configurations are scored by aggregating per-object constraint satisfaction, including an additional
soft bias discouraging obstruction of door-to-door circulation. The highest-scoring grid placement is retained before
resuming DFS over the remaining objects. We optionally apply a small positional and rotational jitter to grid-constrained
objects, retaining only collision-free perturbations. Fig. 18 illustrates how the new grid layout modality can simplify the
task of placing uniformly spaced objects.

Style accents with persona descriptions Persona descriptions conveying stylistic information were filtered from the
full set in PersonaHub [42] via GPT-4.1-mini prompted as shown in Fig. 23. The effects of adding samples from this
filtered set to a scene specification via the simple binding structure used to generate the ~110k scenes in MSMultiType
are illustrated by Fig. 19.

24



Original Holodeck [26] prompt No edge placement emphasis New prompt with grid layout

. + Using a grid constraint helps

edge: at the edge of the edge: at the edge of the room, me create more realistic layouts

close to the wall when placing multiple objects in a

room, close to the wall, most of . S
the obiects are placed here I most of the objects are placed repetitive pattern across a floor
J P here... I prefer objects to be placed area that are meant to be away from

prefer objects to be placed at the
edge (the most important constraint)
of the room if possible, which makes
the room look more spacious...

at the edge (the most important room edges. Since grids are likely

constraint) of the room if possible, to occupy a considerable amount of

which makes the room 1look more space, it is convenient to place them

spacious... as early as possible after the anchor
object...

Figure 18 Object placement versus inclusion of the ‘grid’ layout constraint. In all samples, the textual scene specification in
the LLM prompt is ‘a primary school classroom’. In the bottom row we additionally disable a bias term meant to improve
door-to-door navigability in multi-room scenes. Text in red (green) indicates removal (addition).

the favorite waiting

the favorite waiting room of a person that the favorite waiting
room of a person who identifies as ‘A curator room of a person who
identifies as ‘A vintage specializing in health identifies as ‘A former
a waiting room vinyl record collector and science exhibits, PBA basketball player
who is challenged to constantly seeking the who still holds a grudge
keep their growing epidemiologist’s input against the alumni for
collection in check* to ensure accuracy and leaving the team®

educational value‘

Figure 19 Complementing scene specifications with persona descriptions produces notable stylistic changes and inclusion of a
wider variety of object types in LLM-generated scenes.
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SYSTEM PROMPT:

You are an expert in 3D model analysis. Your main task is to identify 3D models that contain more than
a single object (e.g., kitchens with cabinets and sinks, dining tables with chairs, or assortments of objects of
some or multiple categories, to name a few examples). You also decide whether the 3D model seems to have missing
geometry, e.g. resulting from an incomplete scan, or excessive geometry, e.g., resulting from a scan that also
reconstructs part of the supporting surface or background, or due to additional props added as decoration for
rendering. Among others, a model without excessive geometry should not make the main object appear as being
mounted or placed on any type of surface or structure. Finally, you also decide whether the model’s object
contains surfaces that can be used as receptacles of smaller object types (like seats of a chair or sofa, or top
of a table, among others), and whether the model seems realistically textured for an object of the given category.

The provided data is a collage of renders of the 3D model from different perspectives, showing the
front, left, back, and right sides. The expected background should be a flat white color, with everything else
being part of the model.

Your decisions should be structured as a JSON dict with the following entries:

- ‘object types’: List[str], with each entry corresponding to an object type present in the model, e.g.,
[’shoe’] for a model of a pair of shoes;

- ‘object instances’: Dict[str, int], with an approximate count of instances of each type, e.g., ’book’: 3
for a model of a pile of 3 books);

- ‘main object type’: str, type of either largest object, or the most meaningful one, e.g., ’plate’ for a
model of a plate with a fork on top;

- ‘supporting structures’: List[str], typically empty, with names of visible structures supporting the main
object, e.g. fragments (or panels) of tables, walls, floors, rugs, etc.;

- ‘excessive geometry’: str, typically ‘No excessive geometry’, briefly describing the presence of supporting
or background surfaces possibly added to the model as decoration for rendering or due to poor segmentation
of a reconstructed or scanned model;

- ‘has excessive geometry’: bool, providing a binary response from the analysis under ‘excessive geometry’;

- ‘detachable part types’: List[str], typically empty, including easily detachable parts of the main object
that should not be considered additional objects as they appear in place, e.g., [‘light bulb’, ‘lamp
shade’] for a model of a table lamp with those parts visible and mounted at their proper places on the
main object;

- ‘is single object’: bool, considering all previous responses, whether the model only contains one object
(no additional objects, other than possibly detachable parts that appear properly installed on the object)
and does not include excessive geometry of any kind;

Figure 20 System prompt used with GPT-4.1 to generate alternative annotation for Objaverse object assets filtering in batch mode
(continues in Fig.21).
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- ‘missing geometry’: str, typically ‘No missing geometry’, briefly describing where the model appears to
have missing geometry, e.g., no geometry around the back side, resulting in empty render or some distorted
view of the front one for that perspective. Do not take into consideration whether the model appears to
be lacking textures;

- ‘has missing geometry’: bool, providing a binary response from the analysis under ‘missing geometry’;

- ‘receptacles’: List[str], generally empty for small objects, including names of the main object’s surfaces
that can be used as receptacles for smaller objects, as their normals are oriented upward and have
sufficient area with no/low curvature, e.g. [‘top of mattress’] for a model of a bed with an installed
mattress.

- ‘texture quality’: int, range @ (no texture, making the object in the model hard to identify) to 9 (detailed
and realistic texture for the object type, making the model appear close to real).

An example response to a query with renders of a model depicting a bookshelf with about 10 books in red, blue,
and white placed on a green tiled floor where the render from the back shows the same spines seen from the front
could be:

<EXAMPLE JSON OMITTED>

Feel free to briefly reason before providing you response as a JSON parseable dict, which must include
clear and concise values for all the required entries without requesting additional input.

Figure 21 System prompt used with GPT-4.1 to generate alternative annotation for Objaverse object assets filtering in batch mode
(continues from Fig.20).
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We need to generate placement options for synsets used to label objects. For each of these synsets, we have
associated specific types, text descriptions of some objects, and scale ranges.

Write the placement options in JSON format, and do not add any additional comments. The structure is a
mapping from each synset to a nested mapping with Boolean entries, indicating whether each property seems likely
for objects of the given synset:

{
‘hasMultipleObjects’: refers to a composition or set of several objects,
‘isScene’: refers to a scene or a set of objects (like an assortment) rather than a single object,
‘roomTypes’: {
‘inKitchens’: appears in a kitchen,
‘inLivingRooms’: appears in a living room, media room, or dining room,
‘inBedrooms’: appears in a bedroom, office, or playroom,
‘inBathrooms’: appears in a bathroom, restroom, or laundry room,
‘inOthers’: appears in other room types like garages, balconies, etc.
h
‘feasiblelLocations’: {
‘onFloorInCorner’: placed directly on the floor, in a corner,
‘onFloorInMiddle’: placed directly on the floor, anywhere away from walls,
‘onFloorOnEdge’: placed directly on the floor and in contact with a wall,
‘onWall’: placed on a wall,
‘fromCeiling’: hangs from the ceiling
3
‘isPickupable’: allows being picked up with a single hand,
‘isKinematic’: has an effective fixed pose, as in Unity’s kinematic bodies,
‘multiplePerRoom’: appears multiple times in the same room
3

Please set at least one of the ‘roomTypes’ (try to use ‘inOthers’ sparingly) unless the synset seems to
refer to a scene rather than a single object as signaled in ‘isScene’. Also note that enabling any of the
‘feasiblelLocations’ options (floor, wall, or ceiling) prevents the objects os the synset from being placed on
top of other structures or furniture.

The synsets (along with associated specific types, sample descriptions, and scale ranges in cm) to
annotate are:

<OMITTED BATCH OF INPUT DATA>

Figure 22 Prompt used with GPT-40 to determine placement options for a given batch of synsets.
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SYSTEM PROMPT:

You are an expert in sociology, psychology, and interior design counseling. Given a list of one-line
personal identity statements, your task is to identify which individuals are likely to find certain indoor
scenes visually memorable due to the presence of large, interest-relevant objects. These objects should stand
out even in visually cluttered environments.

Typically, only about 25% of the identities will be sufficiently specific or interest-oriented to warrant
this kind of visual sensitivity. Avoid selecting identities that are too abstract, ethnicity-related,
enterprise-centric, or related solely to virtual environments, as these are unlikely to correspond to specific,
visually memorable physical elements.

Return your output as a JSON-parseable dict mapping indices corresponding to identity statements that
are useful for informing visually impactful interior design styles to a string describing visual objects,
decoration items, pieces of furniture, etc., that would instantly draw the attention of each chosen personality
in some indoor scene.

Figure 23 System prompt used with GPT-4.1-mini to select valid persona descriptions in batch mode.
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(a) Average grasp success rates by object category in a random sample of MolmoSpaces houses.
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(b) Average grasp success rates by category for articulated objects in a random sample of MolmoSpaces houses.

Figure 24 Average grasp success rates by category for all objects tested in a random sample of scenes from MSCrafted and

MSProcObja MolmoSpaces-Scene dataset.
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