Menu

"What happens if..."

Learning to Predict the Effect of Forces in Images

  • "What happens if..." Learning to Predict the Effect of Forces in Images

    What happens if one pushes a cup sitting on a table toward the edge of the table? How about pushing a desk against a wall? In this paper, we study the problem of understanding the movements of objects as a result of applying external forces to them. For a given force vector applied to a specific location in an image, our goal is to predict long-term sequential movements caused by that force. Doing so entails reasoning about scene geometry, objects, their attributes, and the physical rules that govern the movements of objects.We design a deep neural network model that learns long-term sequential dependencies of object movements while taking into account the geometry and appearance of the scene by combining Convolutional and Recurrent Neural Networks. Training our model requires a large-scale dataset of object movements caused by external forces. To build a dataset of forces in scenes, we reconstructed all images in SUN RGB-D dataset in a physics simulator to estimate the physical movements of objects caused by external forces applied to them. Our Forces in Scenes (ForScene) dataset contains 65,000 object movements in 3D which represent a variety of external forces applied to different types of objects. Our experimental evaluations show that the challenging task of predicting long-term movements of objects as their reaction to external forces is possible from a single image. Less

Video

Source Code and Dataset

You can download the source code, dataset, and the simulator code from the following link.