Recent Papers

  • "What happens if..." Learning to Predict the Effect of Forces in Images
    Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi ECCV 2016

    What happens if one pushes a cup sitting on a table toward the edge of the table? How about pushing a desk against a wall? In this paper, we study the problem of understanding the movements of objects as a result of applying external forces to them. For a given force vector applied to a specific location in an image, our goal is to predict long-term sequential movements caused by that force. Doing so entails reasoning about scene geometry, objects, their attributes, and the physical rules that govern the movements of objects. We design a deep neural network model that learns long-term sequential dependencies of object movements while taking into account the geometry and appearance of the scene by combining Convolutional and Recurrent Neural Networks. Training our model requires a large-scale dataset of object movements caused by external forces. To build a dataset of forces in scenes, we reconstructed all images in SUN RGB-D dataset in a physics simulator to estimate the physical movements of objects caused by external forces applied to them. Our Forces in Scenes (ForScene) dataset contains 65,000 object movements in 3D which represent a variety of external forces applied to different types of objects. Our experimental evaluations show that the challenging task of predicting long-term movements of objects as their reaction to external forces is possible from a single image. The code and dataset are available at: http://allenai.org/plato/forces. Less

  • ObjectNet3D: A Large Scale Database for 3D Object Recognition
    Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su, Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese ECCV 2016

    We contribute a large scale database for 3D object recognition, named ObjectNet3D, that consists of 100 categories, 90,127 images, 201,888 objects in these images and 44,147 3D shapes. Objects in the 2D images in our database are aligned with the 3D shapes, and the alignment provides both accurate 3D pose annotation and the closest 3D shape annotation for each 2D object. Consequently, our database is useful for recognizing the 3D pose and 3D shape of objects from 2D images. We alsoprovide baseline experiments on four tasks: region proposal generation, 2D object detection, joint 2D detection and 3D object pose estimation, and image-based 3D shape retrieval, which can serve as baselines for future research using our database. Less

  • Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images
    Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi CVPR 2016

    In this paper, we study the challenging problem of predicting the dynamics of objects in static images. Given a query object in an image, our goal is to provide a physical understanding of the object in terms of the forces acting upon it and its long term motion as response to those forces. Direct and explicit estimation of the forces and the motion of objects from a single image is extremely challenging. We define intermediate physical abstractions called Newtonian scenarios and introduce Newtonian Neural Network (N3) that learns to map a single image to a state in a Newto- nian scenario. Our evaluations show that our method can reliably predict dynamics of a query object from a single image. In addition, our approach can provide physical rea- soning that supports the predicted dynamics in terms of ve- locity and force vectors. To spur research in this direction we compiled Visual Newtonian Dynamics (VIND) dataset that includes more than 6000 videos aligned with Newto- nian scenarios represented using game engines, and more than 4500 still images with their ground truth dynamics. The code and dataset are available at: http://allenai.org/plato/newtonian-understanding/. Less

  • A Task-Oriented Approach for Cost-sensitive Recognition
    Roozbeh Mottaghi, Hannaneh Hajishirzi, and Ali Fahradi CVPR 2016

    With the recent progress in visual recognition, we have already started to see a surge of vision related real-world applications. These applications, unlike general scene understanding, are task oriented and require specific information from visual data. Considering the current growth in new sensory devices, feature designs, feature learning methods, and algorithms, the search in the space of features and models becomes combinatorial. In this paper, we propose a novel cost-sensitive task-oriented recognition method that is based on a combination of linguistic semantics and visual cues. Our task-oriented framework is able to generalize to unseen tasks for which there is no training data and outperforms state-of-the-art cost-based recognition baselines on our new task-based dataset. Less