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Abstract

The promise of autonomous scientific discovery (ASD) hinges not only on answer-
ing questions, but also on knowing which questions to ask. Most recent works
in ASD explore the use of large language models (LLMs) in goal-driven settings,
relying on human-specified research questions to guide hypothesis generation.
However, scientific discovery may be accelerated further by allowing the Al system
to drive exploration by its own criteria. The few existing approaches in open-
ended ASD select hypotheses based on diversity heuristics or subjective proxies
for human interestingness, but the former struggles to meaningfully navigate the
typically vast hypothesis space, and the latter suffers from imprecise definitions.
This paper presents AUTODISCOVERY—a method for open-ended ASD that in-
stead drives scientific exploration using Bayesian surprise. Here, we quantify the
epistemic shift from the LLM’s prior beliefs about a hypothesis to its posterior
beliefs after gathering experimental results. To efficiently explore the space of
nested hypotheses, our method employs a Monte Carlo tree search (MCTS) strategy
with progressive widening using surprisal as the reward function. We evaluate AU-
TODISCOVERY in the setting of data-driven discovery across 21 real-world datasets
spanning domains such as biology, economics, finance, and behavioral science.
Our results demonstrate that under a fixed budget, AUTODISCOVERY substantially
outperforms competitors by producing 5-29% more discoveries deemed surprising
by the LLM. Our human evaluation further reveals that two-thirds of discoveries
made by our system are surprising to domain experts as well, suggesting this is an
important step towards building open-ended ASD systems.

1 Introduction

There has been a surge of recent progress in using large language models (LLMs) for autonomous
scientific discovery (ASD) [Majumder et al., 2024bl Wang et al., 2024] [Lu et al.| 2024} Skarlinski
et al., 2024, Majumder et al.| 2025| |Gottweis et al., 2025, [Huang et al.| [2025]]. Most prior works
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Figure 1: Overview of AUTODISCOVERY: A method for open-ended ASD that is guided by Bayesian surprise.
We elicit LLM prior and posterior beliefs about hypotheses via sampling, and use surprisal as a reward function
within an MCTS procedure to find hypotheses by trading-off exploration and exploitation of the hypothesis
space in search for surprising discoveries.

operate within a “goal-driven” setting: given some dateﬂ the user is required to provide a research
question; then an LLM is prompted to (1) generate a hypothesis (i.e., an assertion about the true state
of the world) that is relevant to the research question, (2) propose an experiment to test the hypothesis,
(3) generate and execute code to perform the experiment, and (4) analyze the experiment results to
derive a conclusion.

On the other hand, while there has been some work on ideating research ideas from the literature
[Spangler et al.,[2014] [Baek et al.,[2023], there has been limited investigation of the full “open-ended”
setting, where the ASD system itself explores more broadly by generating hypotheses according to
its own measures of research promise, executing the aforementioned steps, and then using its results
to propose new hypotheses in a never-ending process (akin to the workflow of a human scientist). A
key challenge, then, is that of search—which hypotheses should be investigated next that will lead to
novel, impactful scientific discoveries?

Prior efforts in open-ended automated discovery have used search strategies such as rejection sampling
and evolutionary algorithms with either a human in the loop [Yamada et al.| 2025} (Gottweis et al.}
[2023] [Tansen et al.| [2023]] to filter the generated hypotheses (thus, not fully autonomous) or using
automatic rewards such as diversity and LLM-as-judge proxies for human interestingness, novelty,
or utility [Zhang et al},[2023a| [Lu et al.| [2024]|. Diversity alone, however, is insufficient due to the
massive search space of hypotheses in real-world scientific domains, where not all regions may
equally be likely to lead to discoveries. Moreover, the ability to sample diverse sequences from an
LLM has itself been shown to be challenging [Lanchantin et al., 2025 [Krishnamurthy et al., 2024].
Human proxy metrics, e.g., interestingness, are not suitable either due to their subjective nature, with
even human scientists demonstrating a high degree of disagreement [Ceci and Peters, [1982] [Cicchetti]
1991], Rothwell and Martyn|, 2000, [Weller, 2001}, [Pier et al.,[2018]], making their automated proxies
unreliable. Therefore, it remains unclear: how can diverse hypotheses be explored at scale and what
automatic metrics may guide scientific discovery?

In this work, we address these questions and propose AUTODISCOVERY—a method for open-ended
ASD that is guided by Bayesian surprise [[tti and Baldil [2005]], which quantifies how data affects
a natural or artificial observer by measuring the distance between its posterior and prior belief
distributions (see Fig.[I). Our choice is motivated by recent findings from [Shi and Evans| [2023],
which show that the improbability or surprisal of a hypothesis is often a strong predictor of scientific
impact. To automate the computation of surprisal, we use an LLM model itself as the Bayesian
observer. In so doing, we make a simplifying assumption and focus on developing a procedure to

'A collection of datasets (data-driven discovery) or related papers (literature-driven discovery).



expand the knowledge frontier of the model itselfﬂ We mechanize this frontier by deriving prior and
posterior distributions about an LLM’s belief about hypotheses, without and with conditioning on an
empirical evaluation of the hypotheses given data, respectively.

To sample hypotheses with high surprisal, we propose a Monte-Carlo tree search (MCTS) [Coulom,
2006] procedure with progressive widening [[Couétoux et al., 201 1]], which provides a principled
mechanism to balance exploration and exploitation of the vast hypothesis search space. In Figure[T}
we show how MCTS is able to navigate the search space and find the most number of surprising
hypotheses under a fixed budget, where surprisals may even be discovered from non-surprising nodes.

We evaluate AUTODISCOVERY in data-driven discovery (DDD) [Majumder et al., [2024b, [2025],
where the input to a discovery task is a collection of datasets and a programming environment
making it suitable for evaluating fully autonomous discovery. In experiments over 21 real-world
datasets across behavioral science, economics, biology, and finance, we find that AUTODISCOVERY
finds 5-29% more number of hypotheses surprising to the LLM agent as compared to strong search
baselines. In a human study, we further find that two-thirds of surprising discoveries found by
AUTODISCOVERY correlate with human surprisal, indicating that optimizing for Bayesian surprise
may be an effective proxy to guide real-world open-ended ASD.

In summary, our contributions are as follows:

* We provide the first formal definition of surprise within the context of autonomous scientific
discovery, inspired by prior work on Bayesian surprise.

* We present a novel method, AutoDS, that combines this notion of surprise with MCTS to perform
hypothesis search in an open-ended setting (no goal specified).

* We show that AUTODISCOVERY outperforms competitors by 5-29% at finding discoveries that
are surprising to the LLM in extensive data-driven discovery experiments, spanning 21 real-world
datasets. In a human study with 500+ hypotheses, we find that 67% of the surprising discoveries
made by AUTODISCOVERY are surprising to domain experts, showing promise for real-world
open-ended ASD.

2 Preliminaries

DDD formalization. Following [Majumder et al.|[2025], we define a data-driven hypothesis H in H
(the space of such hypotheses) as a natural language statement that defines relationships () between
a set of variables (v) under contexts (c). Further, given a dataset D, the truth value for H may be
inferred using a verification procedure Vp, : H — {supported, unsupported}, where the space of
valid Vp is potentially any executable Python program.

Discovery agent. We call any agent capable of generating and verifying a data-driven hypothesis
given a dataset and a programming environment a discovery agent. In this work, we use a multi-agent
architecture [Majumder et al.||2024al], composed of LLMs that collaboratively propose experiment
plans, write and execute Python code to conduct those experiments, critique and fix mistakes, and
analyze their results. Figure[T]shows the input/output flow for our discovery agent. Please see the
appendix for the complete details.

Open-ended DDD. Unlike in the goal-driven setting, where the task is to search for a verifiable
hypothesis that may answer a research question provided explicitly as input, the open-ended setting
requires a discovery agent to iteratively generate and verify hypotheses given only the dataset to
make discoveries. To improve search efficiency, an exploration strategy may be used that repeatedly
invokes the discovery agent in its inner loop and typically terminates after a predefined budget is
exhausted.

3 AUTODISCOVERY: Autonomous Discovery via Surprisal

We present AUTODISCOVERY (Fig.[T), a method for open-ended autonomous scientific discovery
that leverages LLMs to identify and prioritize hypotheses based on surprisal—a principled measure

2We anticipate that this knowledge frontier will rapidly approach that of humans as models, especially
retrieval-augmented ones, continue to advance.
3No wet lab experiments.



of belief shift induced by experimental evidence. To this end, we formalize surprisal using a Bayesian
framework, introduce a practical method for belief elicitation via LLM sampling, and describe how
surprisal can guide efficient exploration of the hypothesis space via tree-based search.

3.1 Measuring Surprisal

Consider a dataset D, a data-driven hypothesis H € H, and its verification procedure Vp. For a
given agent, let 6 € [0, 1] denote its belief about the support for H in D, i.e., a probability that H
may be verifiable by some Vp. We assume the agent is uncertain about the value of 6 and we model
this uncertainly using a Beta distribution, i.e., 0y ~ Beta(«, ). In particular, let P(65) denote the
agent’s prior (Beta) distribution for the value of 8 given only the hypothesis, and P(0y | Vp) its
posterior (Beta) distribution after observing results from the verification procedure Vp.

We first discuss how to estimate these two distributions by querying the agent, and then describe how
to use these estimated distributions to compute the agent’s surprisal.

Belief Elicitation via Sampling. In order to empirically estimate an LLM agent’s prior and posterior
distributions of 0, we use the Beta-Bernoulli conjugacy to propose a simple procedure that samples
n boolean responses from the LL.M about the truth value for H, before and after revealing results
from Vp(H) in the prompt. The empirical frequencies of “frue” responses (Kprior and Kpog) are
treated as Bernoulli outcomes, which are used to make Bayesian updatesﬂ to estimate the prior and
posterior distributions of 0y, denoted Peg(6r) and Pey (61 | V), respectively, as follows:

Pest(QH) = Beta(QH | 1+ kpriora 1+n-— kprior)’ and (1)
Pest(eH | VD) = Beta(eH | 1+ kprior + kposta 1+ (7’L - kprior) + (n - kpost))~ 2)

We will henceforth use Pegt(6) and Pe (65 | Vp) as empirical estimates of P(f) and P05 | Vp).

Bayesian surprise. Inspired by [Itti and Baldi| [2005]], we propose the use of Bayesian surprise, a
distance measure between the prior and posterior beliefs, to quantify the magnitude of change in
beliefs that occurs when a discovery agent observes results from Vp (H). Specifically, we define

BS(H,Vp) := DxrL(P(0x | Vp) || P(0g)). (3)

Surprisal. We now formalize the intuition that surprisal arises when beliefs update in a directionally
significant way. We say that a surprisal has occurred if there is a shift in the agent’s expected belief
about H, i.e., a change in leaning about its beliefs (e.g., from supported to unsupported), given
evidence from Vp; specifically if Epg,, |v,,)[0#] lies on a different side of a decision threshold &
(typically, we set 0 = 0.5) than Epg,,)[0]. To capture both the surprise due to directional change

and its informational significance, we define Bayesian surprise under belief shiff] as

BS(H,Vp), if (Ep(oy|vp)(0u] —6)(Epo,)[0u] —6) <0
BSain(H,Vp) := NEpg,vo)l0u] # Ep,)[0u] 4)
0, otherwise.

We can then formally define surprisal as an indicator function
S(H, VD) = Il.[BSshift(H, VD) > 0}, (5)

which captures whether a belief shift about a hypothesis has occurred on observing new evidence.

3.2 Search using Surprisal-driven MCTS

Our goal is to expand the knowledge frontier of the LLM by proposing hypotheses that yield surprisal
under verification. However, naive strategies, such as repeated independent sampling and greedy
search by an LLM, (a) struggle to reliably generate diverse hypotheses, and (b) do not optimally
balance exploration and exploitation of the vast hypothesis search space H.

*We assume an uninformed prior Beta(1, 1) when no hypothesis is provided.
3The first conditional clause ensures that the expected prior and posterior beliefs lie on different sides of &,
while the second ensures that they are not both equal to J.



- - - — To address both problems, AUTODISCOV-
Algorithm 1 MCTS with Progressive Widening ERY uses Monte Carlo tree search (MCTS)
Require: k € R>o;a € [0,1] [Coulom) 2006] guided by surprisal as the
1: procedure EXPAND(Hpacent) . reward function. In particular, we build a hi-
2 if |children(Hpaen)| < KN (Hparent) then erarchy of diverse hypotheses by iteratively

> Progressive Widening LD i
H ~ LLM(- | {h € path(Houen ~ root)}) conditioning the LLM on a branch of hypoth

i children( Hyuen).add(H) esis sequences composed of prior discoveries
5 return I to sample k new experiments to investigate
6: else further. To prioritize the expansion of nodes
7 H 4~ arg maxy, e chitdren( Hypen) UCT (7) that may be more likely to yield surprisal, we
8 return EXPAND(H ) use upper-confidence bound on trees (UCT)
9 end if [Kocsis and Szepesvdri, [2006] as a principled
10: end procedure method to trade off exploration and exploita-

tion, a strategy commonly applied in large,
combinatorial spaces (e.g., game playing [Gelly et al.,[2012] and program synthesis [[Lim and Yoo,
2016]).

Procedure. We build a search tree where each node represents a hypothesis H € 7, and edges
correspond to sampling steps executed by a discovery agent to generate new hypotheses. The
algorithm proceeds in four phases in each iteration:

1. Selection: Starting from the root, the tree is traversed by selecting a node Hparen: for expansion
that represents a region with high potential for surprisal. In particular, we use the UCT acquisition
function as described in Eq. @), where N (H) is the number of visits to any node in the sub-tree
rooted at H, i.e, subtree(H ), and C is a tunable constant that controls the strength of exploratory
behavior. The first term computes the average surprisal from node H and encourages exploitation
of known good regions, while the second term encourages exploration of new nodes.

2. Expansion: We then sample a child hypothesis H by conditioning on all prior experiments and
results in the branch from Hpyen to the root (see Algorithm 1)) Since it is intractable to sample
all possible children at a node, we employ progressive widening [Couétoux et al.; 201 1]], which
dynamically increases the number of children a node must have based on its visitation count.
Importantly, this encourages search to revisit multiple promising regions within the search space
before expanding any one of them in an unbalanced manner.

3. Executiorﬁ: The sampled hypothesis H from expansion is evaluated by executing its correspond-
ing Vp and estimating its surprisal S(H, Vp) using the belief elicitation procedure (§ .

4. Backpropagation: The estimated surprisal is propagated back through the tree from H to the
root, updating surprisal and visitation statistics for each node in the path.

S(h, VI [ ,
UCT(H) _ Zhesubtrj\cf(a) ( D ) —|—C ) QIOgJA]\?f((]?')Pdrent) (6)

Exploit Explore

3.3 Deduplication via LLM-based HAC

Despite incorporating a search strategy to guide discovery, hypothesis generation in AUTODISCOV-
ERY may sample semantic duplicates. To identify these, we propose an LLM-based hierarchical
agglomerative clustering (HAC) procedure (inspired by Zhang et al. [2023b])) that combines similarity
within a textual embedding space with LLM reasoning to identify semantically equivalent hypotheses.
We run this procedure once after the search budget is exhausted.

We start by constructing an HAC tree using text embeddings of hypotheses. For every merge decision
between a pair of clusters identified in the HAC linkage matrix, two representative hypotheses—each
with its structured breakdown of context, variables, and relationships—are passed to an LLM (GPT-4o,
in our experiments) to determine whether they are semantically equivalent. Specifically, we sample a

SNote that our departure from the “simulation” step is motivated by the fact that execution of Vp (H) (a) is
inexpensive and (b) does not alter the state for subsequent actions in our setting (unlike, e.g., in game playing).



boolean response from the LLM about whether the structured hypotheses are equivalent. If the pro-
portion of “frue” responses exceeds 0.7, we merge the clusters and propagate the updated assignment
before proceeding with the next linkage step. If it does not, the clusters remain independent. The
iteration proceeds until no further merges remain to be evaluated, either because all candidate pairs
involve clusters whose descendants have already been labeled non-duplicates or because the LLM
has reviewed every remaining cluster pair.

4 Experiments

Our empirical evaluation assesses the effectiveness of various methods for the task of open-ended
DDD. The input for the task is a dataset D, its associated metadata, and a budget (which we set to
500) specifying the total number of hypotheses the agent is allowed to explore and verify. The goal of
the agent is to discover as many surprising, but verifiable (over D), hypotheses as possible. We assess
performance on this based on (a) the number of unique hypotheses generated, and (b) the number of
surprisals they produce under the fixed experiment budget.

4.1 Datasets

We utilize a total of 21 datasets (D) from the following benchmark sources spanning areas such as
biology, economics, finance, and behavioral science. We selected the range of datasets to maximize
data-shape heterogeneity, scientific salience (associated with top-tier publications), and breadth of
domains in our evaluation.

* DiscoveryBench [Majumder et al., 2025]], a comprehensive benchmark designed to assess the
ability of large language models to autonomously search for and verify hypotheses using asso-
ciated datasets. DiscoveryBench comprises 264 real-world discovery tasks sourced from pub-
lished papers across six domains (e.g., sociology, engineering) spanning across 14 scientific
datasets. We selected the following five datasets and associated metadata from DiscoveryBench
as a representative sample: freshwater-fish, nls-bmi, nls-ses, nls-incarceration, and
requirement-engineering.

* BLADE [Gu et all [2024] is a benchmark evaluating language agents on justifiable sci-
entific data analysis using real-world datasets and expert-defined analysis decisions. We
use all 15 datasets from BLADE in our work: affairs, amtl, boxes, caschools,
conversation, crofoot, fertility, fish, hurricane, mortgage, panda_nuts, reading,
soccer, teachingratings, and toy.

* SEA-AD [Hawrylycz et al., [2024]] is a multimodal cellular atlas of the human brain across the
Alzheimer’s disease spectrum, developed by the Allen Institute. We utilize the donor-level metadata,
including demographic details, cognitive status, and neuropathological assessments.

4.2 Baselines

We rigorously evaluate our method against common repeated sampling baselines as well as tree-based
search methods. To ensure a fair comparison, we keep the following constant across methods—the
reward function (here, surprisal) and the exploration budget (500 in all experiments). All baselines
and AUTODISCOVERY use the same discovery agent with GPT-40. The discovery agent has access
to a Python environment with available statistical and data analysis packages (e.g., sklearn), and
can generate Python code to run in an execution environment to verify a hypothesis. The agent can
also install additional Python packages to successfully execute a proposed verification experiment.

* Repeated (independent) sampling generates hypotheses in a parallel, context-free manner, i.e.
without knowledge of other experimental results within the same run, using ancestral sampling.
(schematic in “Repeated Sampling”; Figure [I)).

* Last-K (linear) sampling is a context-aware version of repeated sampling with a strictly sequential
exploration strategy in which each new experiment directly follows from the most recent one,
forming a single, linear path of reasoning. To accommodate the context length limitation of LLMs,
we retain only the last X' = 100 parent nodes as context during hypothesis generation. See search
schematic in “Linear”; Figure

* Greedy tree search is one of two tree-based search baselines we evaluate. It focuses on exploitation
by always selecting the highest-value node at each step to condition on for hypothesis generation,
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Figure 2: Search Performance. (a) Cumulative number of surprisals discovered across timesteps within a
budget of 500 evaluations, averaged over 21 datasets. (b) Search efficiency gradient computed using a sliding
window of 10 iterations. (c¢) Number of surprisals discovered per dataset. Takeaway: AUTODISCOVERY
outperforms baselines, including other tree-search methods, in both search efficiency and number of surprisals
discovered.

resulting in a narrow, semi-linear search path (schematic in “Greedy”; Figure[T). This translates to
an MCTS variant with the exploration constant C' = 0.

* Beam search is a tree-based exploration strategy (inspired by [Li et al., 2025]) that restricts search
at each level by retaining only the top-b candidate states (i.e., beam width b), ranked by surprisal
and visitation statistics. We set both the branching factor and beam width to 8. At every level of
the tree, 64 candidate states are generated, and the top 8 are retained for expansion at the next level.
Unlike MCTS, beam search performs breadth-first expansion and aggresively prunes the search
tree, making it more sensitive to early ranking errors (schematic in “Beam”; Figure|[T).

5 Results and Discussion

We first demonstrate via human studies the correlation between LLM and human surprisal and
showcase also a correlation with human interestingness and utility. We then show a comparison
between our proposed Bayesian surprisal and alternative automatic proxies as reward functions to
guide search using MCTS. We then compare AUTODISCOVERY with strong search baselines on the
ability to optimize for surprisal. Finally, we manually validate the accuracy of various aspects within
the discovery agent workflow. Complete experimental details are provided in the appendix.

5.1 Bayesian Surprise versus other Automatic Rewards

We run an analysis of AUTODISCOVERY swapping out the Bayesian surprise reward for other
automatic metrics that are commonly used to assess hypothesis quality in ASD—LLM interestingness
and LLM utility. We also include direct LLM surprisal to provide a comparison with an alternative
mechanism for surprisal elicitation. Each of these metrics is operationalized by prompting the LLM
to provide n boolean responses to their respective questions, e.g., “is this hypothesis interesting to
you?”, then using the average number of “yes” responses as a reward in MCTS.

Bayesian surprise correlates with expert surprisal. We assess performance by evaluating how often
the hypotheses generated using each automatic reward result in Auman surprisal. Each hypothesis
is annotated by 3 STEM MS/PhDs with a total of 1,620 LLM surprisal hypotheses pooled from 4
datasets across MCTS runs with four automatic rewards. Our results in Table 2] show that across
annotator familiarity, AUTODISCOVERY with Bayesian surprise finds hypotheses that have a much



Familiarity \ Bayesian Surprise LLM Surprisal LLM Interesting LLM Utility \ TAA
Low 0.64 0.13 0.18 0.22 0.61
Medium 0.66 0.12 0.13 0.24 0.51
High 0.62 0.08 0.14 0.19 0.71
Overall | 0.67 0.11 0.15 0.21 | -

Table 2: Human Surprisal Across Automatic Rewards. Average human surprisal ratings across different
annotator familiarity levels for four automatic rewards used in MCTS: Bayesian surprise, direct surprisal,
interesting(ness), and utility with inter-annotator agreement (IAA). Takeaway: Bayesian surprise results in the
highest number of human surprisals, with the next best reward showing an average score lower by 0.46 points.

higher correlation (67%) with human surprisal than any of the other automatic rewards, with a 95%
confidence interval of [0.63, 0.71] computed using bootstrapping with 10,000 re-samples.

Interestingness and utility lack clear seman-
tics. We ran another study to assess whether
these automatic metrics correlate with other hu-

Reward | H.Interesting H. Utility

. . . o Bayesian Surprise 0.73 0.79

man notions such as interestingness and utility. .
Our results in Table[T|show that though Bayesian LLM Surprisal 076 0-80
) g yest LLM Interestingness 0.74 0.78
surprise clearly does, so do all the other metrics. || g Utility 0.73 0.78

This suggests that eliciting human interesting-
ness and utility may be difficult due to their sub-
jective nature. A corollary of this is that deriving
automatic versions of such metrics without clear
semantics is likely not useful for guiding open-
ended ASD.

Table 1: Human Interestingness and Utility Scores
Across Automatic Rewards. Average human ratings
for interestingness and utility for four automatic
rewards used in MCTS.

5.2 Optimizing for Bayesian Surprisal

MCTS outperforms other search strategies. In Fig. 2(a), we show the cumulative number of
surprisals discovered across timesteps, averaged over all datasets. We find that all tree search base-
lines outperform repeated sampling and linear search, with MCTS in AUTODISCOVERY show-
ing the highest efficiency for discovery as well as the highest number of surprisals collected.
Notably, as shown in Fig. 2Jb), MCTS shows
minimal reduction in search efficiency across

. . . . . A L I
time, unlike other baselines, including greedy e —
.o e —— 20
tree search and beam search. This indicates .o —
. . conV® ion e Sl 15
room for scaling AUTODISCOVERY with a gj;\;ge -

. . . . . an 2 i
higher budget to continue collecting surprising T — g
discoveries. In Fig.[Jc), we show that the aggre- s — ’

- 0

gate trend in search performance holds across
the evaluated datasets, with AUTODISCOVERY
(MCTS) showing the best performance in 17 out
of 21 datasets.
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In Fig.[3] we plot BSgps (-, -), i.e. the KL diver-
gence between the prior and posterior beliefs
of surprisals, for the hypotheses found using
AUTODISCOVERY along with the direction of
the belief shift. Our analysis reveals different
directional tendencies across domains, with a
higher proportion of surprisals shifting from supported to unsupported. We also observe lower KL
divergence when the model’s beliefs shift towards supporting the hypothesis, possibly indicating the
need for greater evidence in confirmatory studies than in falsification ones [Huang et al.| 2025]].

Figure 3: Belief shift across datasets. Bayesian sur-
prise under belief shift for surprisals discovered using
AUTODISCOVERY, grouped by domain and direction of
shift.



5.3 Validating the Discovery Agent Framework

To evaluate the faithfulness of the verification in AU-

TODISCOVERY, we evaluate two critical pieces: (1)  Artifact % Validity TAA
whether the experiment is valid, i.e., whether it can be Experiment 08.58 0.97
implemented with the available data and helps to confirm Implementation 98.01 0.98
the hypothesis, and (2) whether the experiment was faith- Deduplication 90.76 0.75
fully implemented. We sampled 175 nodes for the MCTS

tree run on nls_bmi from DiscoveryBench with associ- Table 3: Discovery agent validity

ated experiments, code, and analysis, and asked two annotators to annotate the artifacts for experiment
and implementation validity. Table [3]demonstrates very high validity (>95%) for both experiment
and implementation artifacts, also with a very high inter-annotator agreement (Gwet’s AC1 as >0.95).

To evaluate the deduplication via LLM-based HAC pipeline, we subsampled 120 pairs of hypotheses
from MCTS trees on all five DiscoveryBench datasets. Two hypotheses in a pair are sampled from
the same HAC clusters. We asked a range of 1-3 annotators if the two hypotheses from a pair are
structurally equivalent or not. Table [3|shows clusters found by our LLM-based HAC method indeed
group duplicate hypotheses with 91% validity, with good annotator agreement (Gwet’s ACI as 0.75).

6 Additional Related Work

As noted earlier, there has been an explosion of interest in Al-assisted/automated discovery in the
last few years, e.g., AlScientist [[Yamada et al., 2025]], CodeScientist [Jansen et al.,|2025], AgentLab
[Schmidgall et al.,|2025]], Popper [Huang et al., | 2025]], HypoBench [Liu et al., 2025]]. However, these
systems are mainly goal-driven, performing start-to-finish experimentation given a clear research
goal, rather than iterative, open-ended, goal-free exploration (our context). While there has been some
work on initial hypothesis generation, in particular from the literature [Baek et al., [2025| |Spangler
et al.,[2014]], our goal is iterative generation and search over a large space.

While our framework is general, we have evaluated it in the context of data-driven discovery, a rich
context for science [Majumder et al.,|2024b}, 2025} |Gu et al.}|2024]]. While some commercial tools,
e.g., [Bailis et al.l 2017], offer programmatic ways to exhaustively sweep a size-bounded hypothesis
space, our goal is different, namely, to heuristically search a much larger space using LLM.

More generally, surprise (or equivalently, failed expectations) have played a historically important
role in Al, leading to work on encoding expectations and failure-driven learning [Riesbeck, (1981}
Schank and Abelson, 1988 |Schank| |1983]] (indeed, almost all learning can be viewed as responding
to failed expectations). We adopt a formal notion of surprise here and show how it can be successfully
applied for guiding open-ended exploration. We also note the close connection between Bayesian
surprise and other metrics from information theory, e.g., mutual information [Gao et al.,[2024].

7 Conclusion

We introduce a formal framework for Bayesian surprise in autonomous scientific discovery and
propose AUTODISCOVERY, a method for open-ended scientific discovery that uses this frame-
work alongside MCTS to find hypotheses that can expand an LLM’s knowledge frontier. Through
evaluations across 21 real-world datasets and a comprehensive human study, we demonstrate that
AUTODISCOVERY not only outperforms strong baselines in making surprising discoveries but also
aligns well with human judgements of surprise. While we remain cautious about open-ended Al
systems for scientific discovery without sufficient guardrails, academic skepticism, and peer review,
our results underscore the potential benefit a system such as AUTODISCOVERY may provide in
accelerating science.
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Appendix

1 Discovery Agents

1.1 Finite State Machine

When evaluating a hypothesis, agents work collaboratively within a shared context. Speaker selection
is determined by a finite state machine where transitions are determined based on the prior speaker
and the content of the last messsage. Algorithm [2] provides pseudocode for the speaker selection
transitions.

Algorithm 2 Speaker Selection Algorithm

1:
2

3

4

5:
6.
7

8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30:
31:

procedure SELECT_NEXT_SPEAKER(last_speaker, last_response)

if last_speaker = "user_proxy" then
return hypothesis_generator
else if last_speaker = "hypothesis_generator" then
return experiment_programmer
else if last_speaker = "experiment_programmer" then
return code_executor
else if last_speaker = "code_executor" then
return experiment_analyst
else if last_speaker = "experiment_analyst" then
if last_response.error = True and code_failure_count < 6 then
code_failure_count < self.code_failure_count + 1
return experiment_programmer
else
self.code_failure_count <+ 0
return experiment_reviewer
end if
else if last_speaker = "experiment_reviewer" then
if last_response.error = True and self.experiment_revision_count < 1 then
self.experiment_revision_count < self.experiment_revision_count + 1
return experiment_reviser
else
self.experiment_revision_count < 0
return experiment_generator
end if
end if
if last_speaker = "experiment_reviser" then
return experiment_programmer
else if last_speaker = "experiment_generator" then
return None
end if

32: end procedure

1.2 LLM Agents

AUTODISCOVERY defines the following agents:

Experiment Generator: Produces experiment plans for evaluating a hypothesis
Hypothesis Generator: Proposes a hypothesis which predicts the outcome of an experiment.

Experiment Programmer: Writes code to implement an experiment plan. The programmer
is allowed 6 attempts to correctly implement the experiment based on feedback from the
Experiment Analyst.

Code Executor: Executes code produced by the Experiment Programmer; returns the exit
code and Standard Output. (Not LLM-based).
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Figure 4: Finite state machine for the discovery agent.

Experiment Analyst: Analyzes code execution output. Provides feedback to Experiment
Programmer if code needs adjustments.

Experiment Reviewer: Reviews experiment results for alignment with original experiment
plan and ability to support validation of the hypothesis.

Experiment Reviser: Produces a revised experiment should the experiment or its imple-
mentation fail to be successfully implemented or allow validation of the hypothesis.

Hypothesis Belief: Evaluates whether the hypothesis is believed true based on only the
hypothesis statement (prior) or the hypothesis statement and associated experimental results
(posterior). A temperature of 0.7 was used for the experiments underlying the results
presented.

Image Analyst: Provides textual description of images produced by code from Experiment
Programmer.
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1.2.1 System Prompts

The system prompts for each agent are listed below:

Experiment Generator

You are a curious researcher who is interested in open-ended research based on the
provided dataset. Think of a creative and interesting new experiment/analysis to
conduct. Do not provide the code yourself but explain in natural language what the
experiment should do for a programmer.Remember, you are interested in open-ended
research, so do not hesitate to design experiments/analyses that do not directly
relate to the previous one.

Here are a few instructions that you must follow: 1. Strictly use only the dataset
provided and do not create synthetic data or columns that cannot be derived from
the given columns. 2. Each experiment should be creative, independent, and self
contained.3. Check prior experiments, especially look through any recommendations
made to improve the richness of the hypothesis and consider this information while
proposing new experiments. However, do not repeat the same experiment plan.Here are
a few suggestions that will help you to create creative new experiments: 1. You are
encouraged to create composite attributes derived from the given columns. This is
formally known as feature engineering in the machine learning literature. 2. You
are encouraged to propose experiments involving complex statistical tests.
Remember, your programmer can install arbitrary python packages which would allow
it write code for complex statistical analysis. For example: propose appropriate
tests involving categorical variables. 3. You are encouraged to propose experiments
involving complex predictive or causal models. For example: propose non linear
predictive models such as gradient boost trees or SVM as appropriate to model
multivariate relationships. 4. You are encouraged to propose experiments that only
focus on a subset of the given dataset. This will help create unique interesting
context to validate a hypothesis. For example: if dataset has multiple categorical
variable, you could split the data based on specific values of such variable which
would then allow you to validate a hypothesis in that specific context.

Generally, In a typical data-driven discovery workflow, you may need to explore and
visualize the data for possible high-level insights, clean, transform, or derive new
variables from the dataset to be suited for the investigation, deep dive into
specific parts of the data for fine-grained analysis, perform data modeling and
statistical tests.

Experiment Programmer

You will generate code based on an experiment description. State is not preserved
between code blocks. Your code will be included in a python file that is executed.
You must explicitly print any relevant results to standard out appropriately.
Anything that you want displayed must be printed to standard out or presented using
plt.showMake sure you return code in the proper format to execute, i.e. python
code.Ensure your code is clean and concise, and include debug statements only when
they are absolutely necessary.Use only the dataset given and do not assume any
other files are available. Import any libraries you need to use. Always attempt to
import a library first in case it is already installed. You may install libraries
if they are not already available. If you need to install a library, use the
following code example:

import subprocess

import sys

def install(package):

subprocess.check_call([sys.executable, "-m", "pip", "install", "--quiet",
package])
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When installing python packages use the --quiet option to minimize unnecessary
outputPrefer using installed libraries over installing new libraries whenever
possible. If possible, instead of downgrading library versions, try to adapt your
code to work with a more updated version that is already installed. Never attempt
to create a new environment. Always use the current environment. If the code
requires generating plots, use plt.show (not plt.savefig). Avoid printing the
whole data structure to the console directly if it is large; instead, print concise
results which directly address the experimentYou are allowed 6 total attempts to
run the code, including debugging attempts. Debugging Instructions: 1. Only debug
if you are either unsure about the executability of the code or the validity of the
code satisfying the proposed experiment.2. If the code you are writing is intended
for debugging purposes, you MUST clearly tag it using a comment line that contains
only "[debug]".3. DO NOT use "[debug]" anywhere in your code when you are sure
about your implementation. 4. DO NOT combine debug code and actual implementation
of the experiment, keep them seperate.5. For each experiment, you are allowed to
debug each 3 times.6. It is still good to minimise the number of debugging steps.

Experiment Analyst

You are responsible for analyzing the execution output generated by the programmer.
If no code was executed, indicate that there was an error.If the code includes a
line # [debug] i.e "[debugl]" as a comment, strictly treat this as a failed or
debugging experiment. In such cases strictly return error status as **truexx,
provide information that it was a debug code execution, take feedback and request
the experiment to be retried with the new information. Otherwise, you should
analyze the results and provide a short summary of the findings from the current
experiment.

Experiment Reviewer

You are responsible to holitically review the generated code, the output, and the
analysis w.r.t the original experiment plan.Assess whether the experiment was
faithfully implemented. The implementation follows the experiment plan without any
significant deviations.A successful experiment should have clear results that can
be interpreted irrespective of the fact that it supports or rejects the initial
hypothesis.If there were issues, provide feedback on what went wrong.

Hypothesis Generator

Propose a hypothesis which predicts the outcome of the experiment. The hypothesis
should be a statement that can be tested by the experiment. Provide the context,
variables, and relationships that are relevant to the hypothesis. The context should
be a set of boundary conditions for the hypothesis. The variables should be the
concepts that interact in a meaningful way under the context to produce the
hypothesis. The relationships should be the interactions between the variables

under the context that produces the hypothesis.Keep relationships concise. e.g.,
"inversely proportional", "positive quadratic", "significant predictor", "causally
mediating", to name a few.

Experiment Reviser

You are a curious researcher revisiting the most recent hypothesis that could not
be validated effectively in the previous experiment which eventually failed as
indicated by the experiment_reviewer. Your goal is to revise thismost recent failed
experiment by addressing the weaknesses/limitations given by the
experiment_reviewer. The revised experiment should still aim to validate the most
recent hypothesis. Do not provide the code yourself but explain in natural language
what the experiment should do for a programmer.

16



Here are a few instructions that you must follow: 1. Strictly use only the dataset
provided and do not create synthetic data or columns that cannot be derived from
the given columns. 2. You must consider the most recent failed experiment and the
feedback and revise accordingly so that it is effective to validate the most recent
hypothesis. Here are a few generic suggestions that will help you to revise the
experiment along with the feedback you received from experiment_reviewer: 1. You
are encouraged to revise experiments to include focused analysis on a subset of the
dataset, using feature engineering techniques where appropriate. 2. You are
encouraged to revise experiments to retain complex statistical analyses, leveraging
external Python packages if needed to support sophisticated methods.For example:
revise appropriate tests involving categorical variables. 3. You are encouraged to
revise experiments invovling complex predictive or causal models. For example:
revise non linear predictive models such as gradient boost trees or SVM as
appropriate to model multivariate relationships. 4. You are encouraged to revise
experiments that only focus on a subset of the given dataset. This will help create
unique interesting context to validate a hypothesis. For example: if dataset has
multiple categorical variable, you could split the data based on specific values of
such variable which would then allow you to validate a hypothesis in that specific
context.

Generally, In a typical data-driven discovery workflow, you may need to explore and
visualize the data for possible high-level insights, clean, transform, or derive new
variables from the dataset to be suited for the investigation, deep dive into
specific parts of the data for fine-grained analysis, perform data modeling and
statistical tests.

Hypothesis Belief

You are a belief distribution agent that evaluates the latest hypothesis. Based on
the available evidence from prior experiments, assess whether the hypothesis is
true or false. Respond with a JSON object: {"believes_hypothesis": true} or
{"believes_hypothesis": false}.

Hypothesis: {hypothesis}

Carefully consider the evidence and reasoning before making your assessment. Be
critical in your evaluation, but fair to the evidence presented.

Image Analyst

Analyze the given plot image and provide the following:

1. Plot Type: Identify the type of plot (e.g., heatmap, bar plot, scatter plot) and
its purpose.
2. Axes:

* Titles and labels, including units.

* Value ranges for both axes.
3. Data Trends:

* For scatter plots: note trends, clusters, or outliers.

* For bar plots: highlight the tallest and shortest bars and patterns.

* For heatmaps: identify areas of high and low values.
4. Statistical Insights: Mention any relevant statistics if applicable.
5. Annotations and Legends: Describe key annotations or legends.
6. Overall Impression: Summarize insights and implications for further analysis.
7. Interpretation: Provide insights or perspectives based on the data presented.
What conclusions can be drawn?
8. User Objective: If applicable, address the user's question or objective related
to the image.
9. Limitations: Discuss any limitations or biases in the data that could affect
conclusions.

1.3 Deduplication (Clustering)

Prompt
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You are given two sets of hypotheses. Each set describes a context, the variables
involved, and the statistical relationships between them. Your task is to determine
if both sets indicate the same statistical behavior. Consider the following:
Context: The conditions or boundaries under which the relationship holds. Both sets
must have identical contexts.

Variables: All variables must match. Even if their names differ, they must refer to
the same concept.

Relationships: Each hypothesis may include one or more pairs of explanatory and
response variables. The statistical relationship between these variables must be
equivalent, regardless of how it is described.

Your answer should be either "Yes" or "No" with no additional explanation.
Hypothesis Set 1:

{hypothesis_1}

Hypothesis Set 2:

{hypothesis_2}

Answer:

1.4 Agent Hyperparameters

Parameter Value/Setting
Image Analyst GPT-4o
Model
oce {otherwise {GPT-40, 04-mini}

Image Analyst 1.0
Hypothesis Belief 0.7

Temperature odomini NA
otherwise 0

Timeout 600 seconds

Max Network Retries 3

Response Caching Disabled

GPT-40 30
o4-mini 8§
Maximum Context Tokens 128,000
Maximum Message Tokens 4,096

Number Revisal Attempts 1

Number of Code Attempts 6

Number of Belief Samples {

Table 4: System Configuration Parameters

2 Baselines: Search Algorithms

2.1 Repeated Sampling

Repeated sampling is achieved by deriving all experiments independently from the root of the tree,
i.e., all nodes have only a single ancestor node. Repeated sampling can be seen as a special case of
MCTS in AUTODISCOVERY, by either disabling progressive widening, or using progressive widening
with sufficiently large constants, e.g. k > sampling budget.

2.2 Linear Search
Linear search conditions subsequent experiments on prior hypotheses in a single experimental

trajectory. MCTS can be configured to enable this type of search by setting appropriate constants,
e.g., k = 0.5, = 0, which constrains each node to have no more than a single child.
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2.3 Greedy Tree Search

Greedy tree search focuses on exploitation by always selecting the highest-value node at each step to
condition on for hypothesis generation, resulting in a narrow, semi-linear search path. This translates
to an MCTS variant with the exploration constant C' = 0.

2.4 Beam Search

The experimental results presented utilize a beam width 8 = 8 and branching factor k£ = 8.

Algorithm 3 Beam Search

Require: beam width 3, branching factor k&
procedure SAMPLE(s)
2: for all s € beam do
exps < untried|s]

4: for all o € exps do
s ~T(s,a)
6: children[s].add(s")
end for W
8: children[s] < sort(children[s]) by —

beam < children][s][1:£]
10: end for
end procedure

2.5 Programmatic Search: an alternative to LLM agents?

A bottleneck of LLM-driven hypothesis search and verification is latency due to API calls used for
both hypothesis and code generation/debugging for verification. Average time per node/hypothesis
is 75 seconds, with a maximum of 600 seconds in some of the AUTODISCOVERY trees. However,
particularly for data-driven discovery, Bailis et al.|[2017]] developed a heuristic-based programmatic
system with efficient sampling that can ingest up to 2M data events per second. Inspired by this and
to consider an alternative to AUTODISCOVERY in the setting of DDD, we developed a deterministic
programmatic search baseline devoid of LLLM calls. The system exhaustively enumerates up to a
million contexts (with enough data coverage) and performs pre-written (often shallow, e.g., correlation
analysis) statistical analyses in under ten minutes.

To compute Bayesian surprise over these programmatically generated insights, we use an LLM to
translate them into a hypothesis statement. Despite being mathematically unique, many insights
are semantically similar, especially hypotheses with the same interacting variables and relationship,
computed across exploded contexts, but essentially encode the same generalized insight. After an
LLM-based deduplication, the programmatic search generated an average of 109 unique surprisals,
when computed post-hoc. While limited due to dataset-specific human interventions and shallow
insights, programmatic search can empower the initial explorations done by AUTODISCOVERY
with 10x speed while LLM-driven hypothesis generation (and verification) can focus on complex
hypotheses beyond the scope of the programmatic search—we leave this as a future work.
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Algorithm 4 Programmatic Search Baseline

Require: Dataset D, target y, categorical set C, numeric set A, max depth dy,,.x, coverage threshold
T, significance level o
Ensure: Ranked insight list Z
1: Cpin <+ QUANTILEBIN(N)
> bin numerics
2: F + CUCpn
M {}

> valid context masks

w

4: for k < 1 to dpax do

5: for all feature subsets s C F with |s| = k do
6: for all level vectors £ of s do

7: m /\(f,u)e(s,e) (f=v)

8: if RELATIVEFREQ(m) > 7 then

9: M~ MU{m}
10: end if
11: end for
12: end for
13: end for

14: M + MU {full-data mask}

> — First-pass statistics —
15: Rl «— {}
16: for allm € M do
17: D, < D[m]
18: R1 < R1 USINGLEFACTOR(D,,,, y)
19: R1 < R1 UCORRELATION(D,,, y)
20: R1 < R1 U SIGNIFICANTDRIVERS(D;;,, )
21: end for
22: Ry < FILTERSORT(Ry, , T)

> — Second-pass pattern mining —
23: Ry < DETECTFLIPSEMERGENCE(R1)
24: Rg < FILTERSORT(R2, a, T)

> — Symbolic rendering —
25: T <+ RENDERMATHSTRINGS(R1 U R3) return Z

3 Limitations

« Pitfalls with agentic frameworks. Providing LLM agents agency over experimental direction and
implementation can lead to unexpected failures, e.g., corruption of the execution environment by
installing improper libraries.

* Context window corruption/limits. Particularly in our setting of open-ended discovery, the
discovery agent may show aberrant behavior if the context either becomes exceedingly long or
corrupted due to, e.g., unexpected code execution output. Nodes with many ancestors (e.g. >150)
can also suffer from context-overflowing and show a similar failure mode.

* Ungrounded generations. LLMs occasionally introduce attributes not grounded in the dataset, with
prompt-based constraints insufficient to address the issue completely. Without human oversight,
this may result in the generation of scientifically spurious findings, which is important to guard
against.

e LLM surprisal vs. human surprisal. Despite the 67% agreement between Bayesian surprise and
our human evaluation (Table [2), surprising the LLM is only a proxy for novelty to humans. To
reduce this gap, future work may consider literature-grounded extensions that explicitly incorporate
information such as citations into the LLM surprisal computation.
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4 Human Annotations

4.1 Qualtrics/Prolific Annotation Flow

We conducted our human annotation study using the Qualtrics platform with annotator recruitment
and access managed via Prolific (Fig.[5). Each participant was assigned to a specific dataset through
a unique Prolific link. For every dataset, we created a distinct Qualtrics survey set, comprising 20
hypotheses, and three independent annotators were assigned to evaluate each set.

The annotation flow within Qualtrics was structured as follows:

1. Prolific ID Capture: At the beginning of the survey, participants were asked to enter their
unique Prolific ID to ensure traceability and consistency of responses.
2. Dataset Exposure and Familiarity Assessment: Before any hypothesis was shown, partic-

ipants were introduced to the dataset context and structure. They were then asked to indicate
their familiarity level with the dataset and its domain using the following prompt:

How familiar are you with the dataset and its domain?
* Not familiar at all
¢ Slightly familiar
* Moderately familiar
* Very familiar
» Extremely familiar

Following this, participants rated their confidence in their familiarity score on a slider
ranging from O (no confidence) to 100 (complete confidence):

What is your confidence in the familiarity score you provided above? (Slider:
0-100)

3. Hypothesis Evaluation: Participants were then presented with a sequence of 20 hypotheses,
shown one at a time. For each hypothesis, they responded to the following four questions
using sliders ranging from O to 1. Here, O indicates False, 1 indicates True, and 0.5 represents
Unsure:

(a) What is your belief about this hypothesis? (Slider: 0 = False, 0.5 = Unsure, 1 = True)

(b) Could knowing the truth value for this hypothesis be useful to you? (Slider: 0 = False,
0.5 = Unsure, 1 = True)

(c) Could knowing the truth value for this hypothesis be useful to the scientific community?
(Slider: 0 = False, 0.5 = Unsure, 1 = True)
(d) Do you think this hypothesis is interesting? (Slider: 0 = False, 0.5 = Unsure, 1 = True)

All slider responses were recorded as real-valued scores in the range [0, 1] for subsequent
quantitative analysis.

To manage participant recruitment and validate response completeness, we used the Prolific platform.
Each annotator accessed a specific Qualtrics survey set through a unique Prolific link tied to the
hypothesis sets.

At the end of the survey, participants were shown a completion code, which they were instructed to
submit on Prolific to confirm they had fully completed the task. This code allowed us to:
* Verify that only participants who completed the entire annotation process were compensated,
* Match survey responses with Prolific IDs for traceability,

* Filter out any incomplete or prematurely exited surveys to ensure data quality.

Only responses associated with a valid completion code were included in our final analysis.

Annotator population and payment Evaluating scientific hypotheses is a knowledge-intensive
task. To obtain high-quality, meaningful annotations on the hypotheses, we screen participants
and only allow those with a Master’s/PhD degree in Mathematics and statistics, Information and
Communication Technologies, Engineering, manufacturing and construction, or Natural sciences, to
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take part in the evaluation task. Other pre-screen qualifications were: Residence to be US, UK, or
Canada, and they should be fluent in English. We set an hourly pay rate of $16.68, and we anticipate
taking on an average of 20 minutes (which turned out to be the median completion time, when
computed post-experiment) to complete the survey. For each unique Qualtrics link (each having 20
hypotheses), we require each participant to be unique too, however, the same participant can take part
in two or more unique Qualtrics links.

497 TIntarnal Annatatian

Structured Annotation Interface

Node 10176 — Levet: 1, Node: 0, Parent: 0

Ex Annotation

Was the experiment fitfuly implemented?

[y - ]
Hypothesis

™

Node Details Full Screen
Node ID: 2_1 | Cluster: 5

Hypothesis

Respondents can be clustered into distinct groups based on income and savings behavior, revealing patterns in financial habits and economic
stability.

v Evaluate Deduplication Results
Are the following hypotheses duplicates of the current hypothesis (see above)?

1. Respondents can be clustered into distinct groups based on income and savings behavior, revealing patterns in financial habits and economic stability. Exact match

(oo Tt s |

v Show Node IDs
. 413

Figure 6: Internal annotation tool for discovery agent and deduplication verification.

To verify the faithfulness of the different components within our discovery pipeline, we additionally
built an internal annotation tool. Specifically, we verify three key pieces: (1) whether the experiment
proposed by the LLM is valid, i.e. its feasibility to be implemented using the available data and its
ability to confirm the hypothesis, (2) whether the Python code implementation is faithful to the
proposed experiment, and (3) whether the deduplication procedure is valid. Each author annotator
was shown the experiment plan, experiment analysis, and a review summary for hypotheses (Fig. [6).
Based on this information, they were asked the following questions:

1. Is the experiment valid?
Options: Yes / No / Unsure

2. Was the experiment faithfully implemented?
Options: Yes / No / Unsure

3. Are the following hypotheses duplicates of the current hypothesis (see above)?
Compare the listed hypotheses to the target hypothesis and decide whether they are exact or
near-duplicates in meaning.
Options for each listed hypothesis: Duplicate / Not a duplicate / Unsure
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S Sampling Unique Hypotheses across Methods

In Fig.[/| we aim to disentangle the efficiency of generating hypotheses that are unique (i.e., evaluating
diversity) vs. our joint objective of unique surprisals (as described by our main experiments). Our
results indicate that the diversity-only trend (Fig.[7)) closely aligns with the unique surprisal trend
across methods. In particular, MCTS results in very few duplicate hypotheses on average across
datasets (low standard deviation). We conjecture that the ability to dynamically sample any node
across the tree in each iteration, allows MCTS to leverage unique branches as context while prioritizing
regions in the search space that are likely to result in high surprisal and diversity. Other tree search
methods, such as greedy, follow instead a sequential root-to-leaf sampling procedure, which does not
allow for dynamic sampling.

= 4004 MCTS
3 350 Beam
g Greedy
§ 300+ Rep. Samp.
£ 2501 =™ Linear
o
S
2200
(]
> 150
S
Ko}
> 100
IS
O 504
0 . . . . .
0 100 200 300 400 500

Hypotheses Evaluated

Figure 7: Uniqueness Efficiency with GPT-40. Cumulative number of unique hypotheses discovered across
timesteps within a budget of 500 evaluations, averaged over 21 datasets.

6 Results with 04-mini (‘‘reasoning’’ models)

This section evaluates how search behavior changes when we replace GPT-40 in AUTODISCOVERY
with a “reasoning” model, 04-mini, which is trained to output multiple (and longer) chains-of-thought.
We repeat our main experiments with AUTODISCOVERY as well as each baseline.

Search performance. Overall, we find a similar trend as in our main experiments (as shown in
Fig.[8(a)) when comparing search performance across methods, with MCTS and greedy tree search
outperforming other algorithms. However, we now observe no difference in performance between
MCTS and greedy under our sampling budget of 500 hypotheseﬂ We conjecture that this is due to
the ability of reasoning models in proposing fewer duplicate experiments. Further, Fig. [§(b) shows
that, unlike with non-reasoning models, the search efficiency gradient does not measurably decline
for any method but shows variable absolute values, pointing to differences in ability to find surprisals
for different methods irrespective of ability to find unique hypotheses.

o4-mini vs. GPT-4o. In Fig.[9(b), we plot how AUTODISCOVERY performance changes when
using a reasoning model (04-mini) versus a non-reasoning model (GPT-40). Our results show
that modest, but steady, gains can be seen in terms of cumulative surprisal counts with reasoning
models. Furthermore, qualitatively, we find that the complexity of hypotheses generated by 04-
mini is higher than GPT-40. E.g., the following is a level 5 node found from the Freshwater Fish
dataset (DiscoveryBench): “Within South American freshwater-fish sub-basins, evolutionary rates
(diversification and morphological evolution) exhibit significant positive spatial autocorrelation, such
that geographically proximate basins have more similar rates than distant ones. ”

"It is likely that we would observe a drop-off (similar to the one from the GPT-40 experiments) using greedy
with a larger budget.

24



o
o

MCTS (a) (b)
€ 200 Beam =
3 Greedy 204
3 3
& 150 R‘ep4 Samp. 5}
= = Linear 0.3
5 2
@ g
Q100 £02 MCTS
© = Beam
S S
E s0 EM Greedy
3 3 Rep. Samp.
—— Linear
100 200 300 400 500 00 100 200 300 400
Hypotheses Evaluated Hypotheses Evaluated
504 I m [ MCTS [0 Beam [ Greedy [ Rep.Samp. M Linear (c)
2 404 |]
©
8 |
=
s 30
—
>
wn 20
10 ‘ ‘
0 N X
3 2 X & O O L& o e o o o > XY @ . Y e
PO S S 3 &S F & &S e E S
N @ 2 & © & € & &L & &
[ K & ¢ O g O S T &S
& & e ¢ <& & &
N & Y <

Figure 8: Search Performance with o4-mini. (a) Cumulative number of surprisals discovered across timesteps

within a budget of 500 evaluations, averaged over 21 datasets. (b) Search efficiency gradient
sliding window of 10 iterations. (¢) Number of surprisals discovered per dataset.
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Figure 9: (a) o4-mini: Belief shift across datasets. Bayesian surprise under belief shift for surprisals discovered
using AUTODISCOVERY, grouped by domain and direction of shift. (b) Comparison between 04-mini and
GPT-40. Cumulative surprisal counts using reasoning and non-reasoning models with AUTODISCOVERY

(MCTS).
7 Example Outputs

Code Execution:

Random Forest with Feature Importance

exitcode: 0O (execution succeeded)
Code output: Total samples after cleaning: 84

Best parameters: {'max_depth': 5, 'min_samples_leaf': 2, 'n_estimators':

AUC: mean=0.716, std=0.100
Sensitivity: mean=0.413, std=0.230
Specificity: mean=0.794, std=0.162

Feature Importances:

Age at Death 0.180995
cerad_num 0.176595
braak_num 0.148293

25

200}




thal_num 0.140305
Years of education 0.135508

vas
apo
sex
dty

cular_burden 0.126202
e4_count 0.051388
_bin 0.040713
pe: float64

Plot Analysis (1) ===

1. *xPlot Typex*x:
- This is a bar plot. Its purpose is to display the feature importances from a
Random Forest model.
2. **Axes**:
- xkX-Axis**:
- Title/Labels: Feature names such as "Age at Death," "cerad_num," etc.
- Value Range: Categorical (not numeric).
- *kY-Axiskk:
- Title: Importance
- Value Range: 0.000 to 0.200
3. *xData Trendsx*x*:
- **Bar Plotx*x*:
- The tallest bars indicate "Age at Death" and "cerad_num" as the most
important features.
- The shortest bar is "sex_bin," indicating it is the least important feature.
4. **Statistical Insightsx*x*:
- The features have varying importance, with certain features contributing
significantly more to the model's predictions.
5. *xAnnotations and Legends*x*:
- Title: "Random Forest Feature Importances"
- No additional legends or annotations are present.
6. *x0verall Impressionxx:
- The chart clearly indicates which features are most influential in the Random
Forest model. This can guide further data analysis or model tuning by focusing
on the most important features.
7. *xxInterpretation**:
- "Age at Death" and "cerad_num" are critical to the model's decision-making
process. Understanding these features' importance can provide insight into the
modeled outcome, possibly emphasizing their relevance in predicting or
classifying the target variable.
8. *xUser Objectivex**:
- If the user's objective is to understand which features to prioritize in data
collection or analysis, this plot effectively highlights the priority features
based on their influence in the model.
9. **Limitations*x*:
- Feature importances are specific to the Random Forest model and may not
generalize across different models.
- This plot does not provide information on feature interactions or potential
multicollinearity.
- The analysis doesn't take into account external factors that could influence
the model's outcomes.
Regression
Code output: Interaction effects (Pathology x APOE4) on Last MMSE:
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path_var n coef pval pval_fdr significant

0 thal_num 80 -3.691251 0.008896 0.026687 True
1  micro_gross 80 0.112921 0.768721 0.816070 False
2 micro_screen 80 -0.130590 0.816070 0.816070 False

=== Plot Analysis (1) ===

1. *xPlot Typex*x:
- The plot is a scatter plot with regression lines. It is used to visualize the
relationship between two variables: thal_num and Last MMSE Score, stratified by
APOE4 carrier status.

2. *kAxes**:
- *x*kX-Axisk*:
- Title/Label: thal_num
- Value Range: O to 5
- *x*kY-Axisk*:
- Title/Label: Last MMSE Score
- Value Range: 5 to 35

3. **Data Trends*x*:
- The scatter plot shows different linear trends for APOE4 carriers (1) and
non-carriers (0).
- Carriers (blue) show a steeper declining trend compared to non-carriers (red).
- There is some overlap between the data, but darker regions indicate areas with
more points.

4. **Statistical Insightsx*x*:
- The regression lines suggest that APOE4 carriers tend to have lower MMSE
scores as thal_num increases, more so than non-carriers.

5. **Annotations and Legends*x*:
- The legend indicates two groups: APOE4 carriers (1) and non-carriers (0),
represented by different colors (blue for carriers, red for non-carriers).

6. *x0Qverall Impressionx*x:
- The analysis indicates that as the thal_num increases, the MMSE score tends to
decrease, especially for APOE4 carriers. This suggests a potential impact of
thal_num on cognitive performance, moderated by APOE4 carrier status.

7. **Interpretation**:
- The data implies that individuals carrying the APOE4 gene may experience a
more pronounced decline in cognitive performance (as measured by the MMSE score)
associated with increasing thal_num.

8. *xUser Objectivex**:
- If the user's objective is to assess cognitive decline in relation to thal_num
and genetic factors, the plot provides a clear visual representation of these
relationships.

9. **Limitations*x*:
- The data does not indicate causality.
- There might be confounding factors not accounted for in the analysis.
- The sample size at each thal_num level and the variability are not specified,
which may affect the reliability of the trend lines.

Ordinary Least Squares Regression

Regression Summary:
OLS Regression Results

Dep. Variable: last_mmse R-squared: 0.241
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Model: OLS Adj. R-squared: 0.189

Method: Least Squares F-statistic: 4.690
Date: Tue, 20 May 2025 Prob (F-statistic): 0.000895
Time: 12:10:18 Log-Likelihood: -221.68
No. Observations: 80 AIC: 455.4
Df Residuals: 74 BIC: 469.7
Df Model: 5
Covariance Type: nonrobust
coef std err t P>t [0.025
0.975]
Intercept 20.4041 14.935 1.366 0.176 -9.354
50.162
C(sex) [T.Malel 0.1244 0.961 0.129 0.897 -1.791
2.039
years_edu -0.0143 0.797 -0.018 0.986 -1.602
1.573
braak_num -1.5258 2.725 -0.560 0.577 -6.956
3.905
years_edu:braak_num -0.0050 0.166 -0.030 0.976 -0.336
0.326
age_at_death 0.1295 0.063 2.043 0.045 0.003
0.256
Omnibus: 8.277 Durbin-Watson: 2.013
Prob(Omnibus) : 0.016  Jarque-Bera (JB): 8.367
Skew: -0.590 Prob(JB): 0.0152
Kurtosis: 4.058 Cond. No. 3.95e+03
Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly
specified.

[2] The condition number is large, 3.95e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Interaction term 'years_edu:braak_num': coefficient = -0.0050, p-value = 0.9759

Clustering

Code output:

=== Plot Analysis (1) ===

1. *xPlot Typex**:
- This is a dendrogram, used in hierarchical clustering to show the arrangement
of clusters formed by the algorithm.

2. **Axes**:
- xxX-axis**x: Labeled as "Donors" with no specific units indicated. It
represents the data points (or samples) being clustered.
- **Y-axis**: Labeled as "Distance." This axis shows the distance or
dissimilarity between clusters. The value range is from 0.0 to 20.0.

3. **Data Trends*x*:
- The dendrogram shows the hierarchical relationship of the clusters.
- Longer vertical lines at the top indicate greater dissimilarity between
clusters.
- Shorter lines at the bottom represent more closely related clusters.

4. **Statistical Insightsx*x*:
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- The height at which two clusters join indicates the dissimilarity. Higher
joins mean more dissimilar clusters.

5. **Annotations and Legends*x*:
- No specific annotations or legends are present. The branching structure itself
provides the clustering information.

6. *x0verall Impressionxx:
- The data points are grouped hierarchically, revealing patterns of similarity.
The clusters closer to the bottom are more similar, whereas those joining higher
have more dissimilarity.

7. *xInterpretation%*:
- The dendrogram allows visualization of the data's natural groupings, which can
be useful for determining the optimal number of clusters by cutting the
dendrogram at different heights.

8. **User Objectivex*:
- Likely to identify the grouping structure of the donors based on certain
attributes or metrics of similarity/distance.

9. **Limitations*x*:
- Dendrograms can become cluttered with large datasets, making them harder to
interpret.
- The method's sensitivity to distance metrics and linkage methods can affect
conclusions significantly.

=== Plot Analysis (1) ===

1. **Plot Type:**
- **xType:** Heatmap
- **Purpose:** To visually represent the normalized values of different
neuropathological features, allowing for easy identification of patterms,
variations, and extreme values across various categories.

2. *kAxes:xx*

- **Titles and Labels:**
- **X-Axis:** Neuropathological features such as
Overall_AD_neuropathological_Change, Thal, Braak, etc.
- *xY-Axis:** Sample or observation index (not labeled explicitly, appears
categorical).

- **Value Ranges:*x*
- *xX-Axis:**x Categorical features.
- *xY-Axis:**x Categorical index.

3. **Data Trends:*x*
- *xxHigh Values (Red):** Notable in columns such as "LATE" and
"Arteriosclerosis."
- *x*xLow Values (Blue):** Prominent in "Overall_AD_neuropathological_Change" and
"Total_Microinfarcts."
- **Patterns:** Stripes of consistent color indicate similarities in features
across samples.

4. **Statistical Insights:*x*
- *xNormalized Values:** Range from -2.0 (low) to 2.0 (high), enabling
comparison across features.
- **Distribution:** Variation suggests differences in presence and severity of
the conditions measured.

5. *xAnnotations and Legends:*x*

- xxLegend:** Color bar on the right labeling the normalized values from -2.0
(blue) to 2.0 (red).
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6. *x0verall Impression:**
- The heatmap effectively shows diverse variability in neuropathological
measures. Features such as "Arteriosclerosis" and "LATE" display higher
normalized values, suggesting greater severity in those areas for certain
individual observationms.

7. **Interpretation:*x*
- **Conclusions:** Some features, like "Overall_AD_neuropathological_Change,"
often exhibit low values across samples, indicating a potential pattern of less
severity or frequency in this dataset compared to features like
"Arteriosclerosis."

8. **xUser Objective:**
- **0bjective:**x Identify patterns in neuropathological data that may correspond
to different pathological states or severities across samples. Recognize high
and low prevalence of pathological features.

9. *xxLimitations:*x*
- **Data Bias:** The heatmap portrays normalized data; without raw data,
assessing actual severity is difficult.
- xxInterpretation Bias:** Over-reliance on color may overlook nuanced details.
- **Sample Size:** Not visible; the sample size could affect the robustness of
observed patterns.

This heatmap provides a comprehensive visualization of various neuropathological
features, offering insights into potential underlying patterns across samples. For
further analysis, exploring how these features correlate with clinical outcomes or
demographic data could be valuable.

Cluster 1 (n=14):
Mean Age at Death: 88.21
Mean RIN: 8.58
Sex distribution: {'Female': 0.5714285714285714, 'Male': 0.42857142857142855}
Cognitive Status distribution: {'No dementia': 0.8571428571428571, 'Dementia’:
0.14285714285714285}

Cluster 2 (n=17):
Mean Age at Death: 90.00
Mean RIN: 8.40
Sex distribution: {'Female': 0.5294117647058824, 'Male': 0.47058823529411764}
Cognitive Status distribution: {'No dementia': 0.6470588235294118, 'Dementia’:
0.35294117647058826}

Cluster 3 (n=5):
Mean Age at Death: 90.40
Mean RIN: 8.47
Sex distribution: {'Female': 0.6, 'Male': 0.4}
Cognitive Status distribution: {'Dementia': 0.6, 'No dementia': 0.4}

Cluster 4 (n=19):
Mean Age at Death: 89.47
Mean RIN: 8.65
Sex distribution: {'Female': 0.631578947368421, 'Male': 0.3684210526315789}
Cognitive Status distribution: {'Dementia': 0.5263157894736842, 'No dementia':
0.47368421052631576}

Cluster 5 (n=29):
Mean Age at Death: 87.45
Mean RIN: 7.51
Sex distribution: {'Female': 0.6551724137931034, 'Male': 0.3448275862068966}
Cognitive Status distribution: {'Dementia': 0.7241379310344828, 'No dementia':
0.27586206896551724%}
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8 Example Errors

Excessive Code Execution Output. Automatic code generation is susceptible to unexpected errors,
e.g., due to malformed arguments. Such instances, therefore, may result in uncaught exceptions
and repetitions. For example, the following example shows the same log message being generated
>66,000 times for a single hypothesis node.

[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf

Network Error. Our current experiments use OpenAl API calls and are, thus, reliant on the stability
of their hosted service. Future work may look into using local models.

Traceback (most recent call last):

File "/lib/python3.11/site-packages/autogen/oai/client.py", line 466, in
_create_or_parse
return self._oai_client.chat.completions.create(*args, **kwargs)
File "/1ib/python3.11/site-packages/openai/_utils/_utils.py", line 287, in wrapper
return func(*args, **xkwargs)
File
"/1ib/python3.11/site-packages/openai/resources/chat/completions/completions.py",
line 925, in create
return self._post(
File "/lib/python3.11/site-packages/openai/_base_client.py", line 1239, in post
return cast(ResponseT, self.request(cast_to, opts, stream=stream,
stream_cls=stream_cls))

File "/1ib/python3.11/site-packages/openai/_base_client.py", line 1001, in request
raise APIConnectionError(request=request) from err

Flagged Prompts. In a few instances, we observe that API calls are rejected as violating usage policy
when we’re processing datasets that involve race or gender, likely the effect of aggressive safety
tuning.

=== Plot Analysis (1) ===

1. *xPlot Typex**:

- This is a heatmap.

- Purpose: To visualize the relationship between age, culture, and conformity to
majority proportions.

2. **Axes*x*:
- **X-axis**: Labeled "Culture" with values 1 to 8.
- *xxY-axis**: Labeled "Age" with values 4 to 14.
- No specific units are provided for these axes.

3. *xData Trendsx**:
- Areas of high values (yellow) indicate high proportions of
majority-conformity, such as age 12 and culture 1, and ages 13-14 with cultures 7
and 8.
- Areas of low values (dark blue) indicate low conformity, noticeable at certain
combinations like ages 9 and 11 with culture 8.
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4. **Statistical Insightsx*x*:
- Values range from 0.0 to 1.0, representing proportions.
- High conformity (values of 1.0) is clearly marked, suggesting strong
tendencies toward majority-conformity in specific groups.

5. **Annotations and Legends*x*:
- The heatmap includes a color bar on the right side to indicate the proportion
range (0.0 to 1.0).
- Numerical values within the heatmap provide specific data points for
conformity proportions.

6. **0verall Impression*:
- There are distinct clusters of high conformity at specific age and culture
intersections.
- There is variability across both axes.

7. *xInterpretation**:
- Certain age groups show strong conformity in specific cultures, which could
indicate social or cultural influences.
- The patterns suggest that age and cultural background significantly impact
conformity behaviors.

8. *xUser Objectivex**:
- If the objective is to understand how culture and age influence conformity,
this heatmap effectively highlights potential areas for further sociological or
psychological analysis.

9. **Limitations*x*:
- The heatmap does not indicate causality.
- Missing data points could lead to incomplete conclusions.
- Cultural categories and age groupings might be subjective or oversimplified,
impacting data interpretation.

openai.BadRequestError: Error code: 400 - {'error': {'message': 'Invalid prompt:
your prompt was flagged as potentially violating our usage policy. Please try again
with a different prompt:
https://platform.openai.com/docs/guides/reasoning#advice-on-prompting', 'type':
'invalid_request_error', 'param': No

ne, 'code': 'invalid_prompt'}}

Timeout. The discovery agent, in some cases, may result in timeout errors. This is particularly seen
when the generated experiment program requires a long-running operation or the amount of data
being processed is large.

{"code":"import subprocess, sys\n# Install SALib for sensitivity analysis\ndef
install(pkg): subprocess.check_call([sys.executable, '-m', 'pip', 'install',
'--quiet', pkgl)\ninstall('SALib')\n\nimport pandas as pd\nimport numpy as
np\nimport matplotlib.pyplot as plt\nfrom sklearn.preprocessing import Stan
dardScaler\nfrom sklearn.gaussian_process import GaussianProcessRegressor\nfrom
sklearn.gaussian_process.kernels import RBF, WhiteKernel\nfrom SALib.sample import
saltelli\nfrom SALib.analyze import sobol\nimport
warnings\nwarnings.filterwarnings('ignore')\n\n# 1. Data Preparation\ndf =
pd.read_csv('nls_b

mi_processed.csv')\n# Compute raw saving direction and age

squared\ndf ['SAVING_DIR_raw'] = np.where(df['DISSAVED']==1, -1,\n

np.where(df ['SAMESAVE']==1, 0, 1))\ndf['AGE2'] = df ['AGE']**2\n# Standardize
continuous variables\ncont = ['AGE','INCOME','BMI', 'SAVING_DIR_raw']\nsc
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aler = StandardScaler()\ndf_z = scaler.fit_transform(df[cont])\nfor i, col in
enumerate(cont): df [f'{col}_z'] = df_z[:,i]\n# Ensure binary

covariates\ndf ['GENDER_MALE'] = (df['GENDER']=='MALE').astype(int)\ndf['BLACK'] =
df ['BLACK'] .astype (int)\ndf ['HISPANIC'] = df ['HISPANIC'].astype(int)\n# Predictor
nam

es\nelements =

['AGE_z','INCOME_z','BMI_z','SAVING_DIR _raw_z','GENDER_MALE', 'BLACK', 'HISPANIC']\nX
= df [elements].values\nY = df['BMI'].values\nn, p = X.shape\n\n# 2. Fit Gaussian
Process surrogate on full data\ngp = GaussianProcessRegressor(kernel=RBF (length_sc
ale=np.ones(p))+WhiteKernel (noise_level=1.0)

,\n normalize_y=True, random_state=0).fit(X, Y)\n\n#
3. Sobol sampling problem definition\ndescriptor = {\n 'num_vars': p,\n
'names': elements,\n 'bounds': [[df[col+'_z'].min(), df[col+'_z'].max()] for col

in cont]\n}\n# Use smaller sample for speed\nN = 200\nparam_va
lues = saltelli.sample(descriptor, N, calc_second_order=False)\n\n# 4. Evaluate
surrogate and compute Sobol indices\ny_sobol = gp.predict(param_values)\nsi =
sobol.analyze(descriptor, y_sobol, calc_second_order=False,
print_to_console=False)\nS1 = si['S1']; ST = si['ST']\n\n# 5. Bootstrap uncertainty
esti
mation (B=100)\nB = 100\nboot_S1 = np.zeros((B, p))\nboot_ST = np.zeros((B,
p))\nfor b in range(B):\n idx = np.random.choice(n, n, replace=True)\n Xb, Yb
= X[idx], Y[idx]\n gp_b = GaussianProcessRegressor (kernel=RBF (length_scale=np.o
nes(p))+WhiteKernel (noise_level=1.0),\n
normalize_y=True, random_state=0).fit(Xb, Yb)\n ys =
gp_b.predict (param_values)\n sib = sobol.analyze(descriptor, ys,
calc_second_order=False, print_to_console=False)\n boot_S1[b,:] =
sib['S1']\n boot_ST[b,:] = sib['ST']\nci_S1 = np.percentile(boot_S1,
[2.5,97.5], axis=0)\nci_ST = np
.percentile(boot_ST, [2.5,97.5], axis=0)\n\n# 6. Visualization of Sobol
indices\nplt.figure(figsize=(8,4))\nindices = np.arange(p)\nwidth =
0.4\nplt.bar(indices - width/2, S1, width, yerr=[S1-ci_S1[0], ci_S1[1]-S1],
capsize=5, label='First-order')\nplt.bar(indices + width/2, ST, width,
yerr=[ST-ci_ST[0],
ci_ST[1]-ST], capsize=5, label='Total-order')\nplt.xticks(indices, elements,
rotation=45, ha='right')\nplt.ylabel('Sobol index')\nplt.title('Sobol Sensitivity
Indices for BMI GP Surrogate')\nplt.legend()\nplt.tight_layout()\nplt.show()\n\n#
7. Reporting results\nprint(\"Sobol Sensitivity Indices with 95
CIs:\")\nfor i, var in enumerate(elements):\n print (f\"{var}: S1 = {S1[i]:.3f}
[{ci_S1[0,i]:.3f}, {ci_S1[1,i]:.3£f}], \",\n f\"ST = {ST[i]:.3f}
[{ci_ST[0,i]:.3f}, {ci_ST[1,i]:.3£}\")"}

Next speaker: code_executor

>>>>>>>> EXECUTING CODE BLOCK (inferred language is python)...
code_executor (to chat_manager):

exitcode: 124 (execution failed)
Code output:
Timeout

Next speaker: experiment_analyst

{"error":true,"analysis":"The Sobol sensitivity analysis timed out during bootstrap
computation (B=100). The high computational cost of refitting the Gaussian-process
surrogate and recalculating Sobol indices for each replicate exceeded the time
limit. Consider reducing the sample size for Sobol sampling

(N) and the number of bootstrap replicates (B), or implementing parallelization to
complete the analysis."}
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i+ Research Changelog

(vl.1 — February 2026)

1 Belief Elicitation

1.1 Need for Explicit Bayesian Updates

When presented with new evidence, are LLMs capable of Bayesian reasoning in-context, or are
explicit Bayesian updates, as in AUTODISCOVERY, indeed required? We empirically validate this and
find that without the two-stage belief elicitation procedure in AUTODISCOVERY, the LLM is unable
to principally combine its priors with new experimental evidence, choosing instead to full rely on the
information provided in-context——behavior that runs diametrically counter to the human tendency
of inertia in prior beliefs [Scheffer et al.,2022], a likely consequence of LLLM instruction-tuning.

Concretely, the computation of the posterior Poy(6y | Vp) is in question, which requires the
combination of the prior with the belief based on experimental evidence Vp only. To test this, we run
the following diagnostic experiment. We start with the hypothesis “Health is a strong predictor of
lifespan”, which results in Ep,_ g,,)[0z] = 0.96, i.e., a strongly held prior belief, using GPT-40. Ex
post, we present 25 supporting and 25 contradictory manually labeled “facts” to simulate perfectly
uncertain experimental evidence. Without an explicit Bayesian update, the LLM’s implicit posterior
drops to 0.51, the same as random, indicating that the evidence in-context draws full attention,
completely ignoring its strong prior belief. A Bayesian update, however, formally combines the prior
with the belief samples from the evidence, yielding a posterior that remains meaningfully above 0.5
(0.74 in the example). This justifies our choice of explicit Bayesian updates to obtain a valid posterior
that does not disregard the prior.

1.2 Categorical Sampling to Improve Elicitation Alignment

AUTODISCOVERY estimates an LLM agent’s prior and posterior distributions about a hypothesis
via sampling. In our original formulation, we sample 7 (set to 30 in our main experiments) boolean
responses from the LLLM about the truth of the hypothesis and consider them as Bernoulli outcomes,
which, in turn, are used to compute Beta distributions via the Beta-Bernoulli conjugacy.

However, is the stochasticity in sampling reliable to accurately estimate the internal beliefs of the
model with limited samples? Consider the case when the model encodes a prior distribution about
a hypothesis with a mean of 0.75, a moderately held positive belief. Therefore, in each round of
Bernoulli sampling, the probability of decoding “frue” from the LLM is higher than decoding “false”.
Since each round of sampling is independent, we thus expect the resultant distribution to overestimate
the true belief systematically.

Our investigation reveals that this pathology is a consequence of insufficient expressivity in the
output space during LLM belief elicitation. To address this, we replace the boolean options that the
LLM may select during sampling with instead five categories: “definitely false”, “maybe false”,
“uncertain”, “maybe true”, and “definitely true”. We then transform these categorical samples
into pseudo-Bernoulli counts by assigning scores of 0, 0.25, 0.5, 0.75, and 1.0 to each category,
respectively, which are then converted into a Beta distribution using the standard conjugacy.

1.3 Conflicting Evidence vs. Epistemic Ignorance

First, consider the case when the LLM has an evidence set that supports and contradicts the hypothesis
in equal measure, either from explicit conditioning or its pre-trained knowledge. In this case, the belief
distribution should have low variance at the decision boundary about the truth value of the hypothesis,
i.e., a narrow distribution around 0.5. Consider now the case where the LLM is uncertain due to a lack
of any relevant evidence about the hypothesis. We now expect the belief to be represented instead by
a diffuse distribution, i.e., having high variance. While the first case is already handled by eliciting
“uncertain” from the LLM, we address the second by adding the ability to abstain from providing a
belief, i.e., in each round of sampling, we now allow the LLM to select a “cannot comment” option,
resulting in beta distributions with variable concentration values, akin to human beliefs.
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1.4 Evidence Weight

Under standard Bayesian reasoning, the prior and posterior are computed from the same number of
samples, implying that the evidence contributes proportionally to any implicit beliefs. In practice,
however, researchers may wish to control how strongly the data-driven evidence should influence
belief updates. To accommodate this, we introduce an evidence weight parameter w > 0 that scales
the effective sample contribution of observed evidence before computing the posterior.

Concretely, this corresponds to reweighting the sufficient statistics of the evidence belief, which
amplifies or attenuates the shift from prior to posterior. Larger values of w increase sensitivity to new
evidence, while smaller values yield more conservative updates.

1.5 Normalized Surprisal

Results from AUTODISCOVERY are most naturally interpreted through changes in belief means (i.e.,
Ap = |tpost — ,uprior|). However, Ay is currently not directly comparable across runs because its
attainable magnitude depends on configuration choices. In particular, the maximum possible shift is
controlled by the uninformed prior parameters («, /3), the maximum number of elicited samples N,
and the evidence weight w. For example, increasing w or N may induce a larger posterior shift even
when the underlying evidence is qualitatively similar. Likewise, different priors bound the maximum
attainable change. To make Ay comparable across runs, we characterize the theoretical maximum
belief change achievable given («a, 8), w, and N. We then normalize observed mean shifts by this
bound. See § [3.1]for the derivation.

2 MCTS

2.1 Belief Change Instead of KL Divergence

Our original formulation follows [Itti and Baldi [2005]] and computes surprisal as the KL divergence
between prior and posterior belief distributions. While KL divergence provides a principled measure
of Bayesian surprise, we find that in our setting it is both sufficient and more interpretable to use the
change in mean between the prior and posterior as the reward signal.

2.2 Continuous Rewards

Our initial formulation uses a sparse reward, i.e., a binary surprisal metric that activates only when
a predefined threshold is exceeded. Empirically, however, many hypotheses lie near this decision
boundary and contain informative signal that is discarded under a hard threshold. To better exploit this
signal, we replace the binary reward with a dense, continuous reward proportional to the magnitude
of surprisal and normalized by the threshold. This preserves the notion of a decision boundary while
enabling smoother credit assignment during search.

2.3 Recursive UCB1 Selection Policy

- _ On analyzing the structure of MCTS trees across runs,
Algorithm 5 Recursive UCBI Traversal we observe that UCB1 with progressive widening is
1: procedure SELECT(H parent) unable to prioritize the selection of high-value nodes
C < {Hparent } U children(Hparent) at larger depths, resulting in wide trees with limited
3 H < argmaxpec UCT(h) depth, which semantically reflects lower hypothesis
4 if 1 = Hparent then complexity. We revisit this choice and replace it with
5: return H a recursive UCBI policy (Algorithm [5) that performs
gi else a local search between a node and its children at each
8
9:

en drii.tum SELECT(H) step and greedily optimizes for upper-confidence, yield-
ing a traversal that concentrates search on promising

end procedure . . . .. . .
subtrees without introducing an additional widening
hyperparameter. In practice, we find that this simplifies search dynamics, removes the need to tune
any hyperparameters (k, o), and biases exploration toward exploitation of high-value hypothesis
chains rather than breadth expansion, resulting in deeper trees and hypotheses with higher complexity.
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2.4 Batching and Parallelization

Batch acquisition is standard in Bayesian optimization (BO), where multiple candidate points are
selected per iteration to improve wall-clock efficiency under parallel evaluation settings [Frazier,
2018, |Desautels et al., 2014]. Similar ideas have been explored in parallel MCTS [Chaslot et al.,
2008|], where multiple simulations are expanded concurrently to better utilize compute resources.

Motivated by these approaches, we adopt a batched selection strategy within each MCTS iteration.
Instead of selecting a single node via the search policy, we select the top-B nodes (batch size B)
ranked by the selection policy. Selection is performed without replacement with each node expansion
executed concurrently using a threaded evaluation pipeline.

Empirically, this yields substantial wall-clock improvements. On the Swedish Melanoma and Breast
Cancer datasets, a sequential run with n = 100 experiments required approximately 8 hours with 04-
mini. In contrast, a parallel batched run with n = 500 experiments (B = 5 and 5 threads) completed
in approximately the same time, 5x faster than sequential execution, without compromising on
unique surprisal counts.

2.5 Warmstart

Warmstarting, or space-filling experimentation, is a standard procedure in Bayesian optimization
(BO), where initial proposals are used to improve the posterior predictive distribution and make more
informed experiment proposals in subsequent iterations [Frazier, 2018} [Brochu et al., 2010].

Inspired by this practice, we incorporate a deterministic warmstart phase in AUTODISCOVERY.
Specifically, the root node is expanded W times (set to 8 by default) before invoking the selection
policy. This ensures that search begins with a diverse set of hypotheses, preventing early overcom-
mitment to a single high-variance branch and improving the reliability of MCTS. In addition, we
now allow researcher-provided warmstart experiments as well, which helps AUTODISCOVERY ingest
domain knowledge or prior experimental results.

3 Changelog Appendix
3.1 Derivation for the theoretical maximum belief change

Prior :  Beta(a, )

S=a+p

d ;= min(«, )
¢ = max(q, )
t:=wN

At the maximum, either n = N or m = N. We take m = N here. Then, the maximal mean shift for
a fixed n is

t(n+c)
(S+n)(S+n+t)

A(n) =

Let
u=S+n = wuels, S+ N].

Since ¢ = S — d, we obtain

t(u—d
Adw) = Ll
u(u +t)
Interior maximizer. Differentiate:
—d
Alu) = Lu—a
u(u+1t)



Let

Using the quotient rule,

The numerator simplifies:

w(u +t) — (u—d)(2u+t) = u? + ut — (2u® + ut — 2ud — dt)
= —u? + 2ud + dt.

Setting f/(u) = 0 gives
—w+2ud+dt=0 = u?—2ud—dt=0.
Solving the quadratic:
2d + V4d? + 4dt
uw= % =d++/dd+1).
Thus, the unconstrained maximizer is

w* =d+/dd+1).

Value at the interior optimum. Plug into A(u):

u—d=+/dd+1t), u(u+t)=(Vdd+t)+d)(Vdd+t)+d+1).

After simplification,

A(imerior) \4 d+t— \/&

L Yk

Feasibility constraint. Because u € [S, S + NJ, the true maximizer is

Uopt, = clip (u*, S, S—I—N).

t (uopt — d)

Amax Na y & =
( e 6> uopt(uopt + t)

t =wN, d = min(a, §).
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