
How2Everything: Mining theWeb for How-To
Procedures to Evaluate and Improve LLMs
Yapei Chang1,2 Kyle Lo1, 3 Mohit Iyyer2 Luca Soldaini1
1Allen Institute for AI 2University of Maryland 3University of Washington

Code: How2Everything | Data: How2Bench, How2Train | Model: How2Judge | Contact: yapeic@umd.edu

Abstract

Generating step-by-step “how-to” procedures is a key LLM capability: how-to advice is commonly
requested in chatbots, and step-by-step planning is critical for reasoning over complex tasks. Yet,
measuring and improving procedural validity at scale on real-world tasks remains challenging and
understudied. To address this, we introduce How2Everything,1 a scalable framework to evaluate and
improve goal-conditioned procedure generation. Our framework includes How2Mine, which mines
351K procedures from 980K web pages across 14 topics and readily scales to larger corpora. From this
pool we build How2Bench, a 7K-example evaluation set balanced across topics. To reliably score
model outputs, we develop How2Score, an evaluation protocol that uses an LLM judge to detect
whether a generation contains any critical failure that would prevent achieving the goal. For low-cost,
reproducible evaluation, we distill a frontier model into an open 8B model, achieving 80.5% agreement
with human annotators. How2Bench reveals clear scaling trends across model sizes and training
stages, providing signal early in pretraining. Finally, RL using How2Score as a reward improves
performance on How2Bench by >10 points across three models without systematic regressions
on standard benchmarks, with gains robust to superficial source-document memorization or format
compliance. Taken together, How2Everything shows how pretraining web data can support a closed
loop of capability evaluation and improvement at scale.

The How2Everything Framework

Figure1a How2Mine mines and refines how-to procedures
at web scale across 14 topics. Running this pipeline on
about 1M documents yields 351K procedures.

Figure 1b How2Bench + How2Score + How2Judge
support scalable evaluation with an open 8B judge, showing
clear scaling trends across model sizes and training stages.

Figure 1c RL on How2Train with How2Score as the reward lift How2Bench performance while maintaining or
improving scores on 12 standard post-training evaluations, indicating broad downstream utility.

1Of course, no method has infinite coverage. The name is a playful pun to convey the scale and diversity of our framework.

1

https://github.com/lilakk/how2everything
https://huggingface.co/datasets/how2everything/how2bench
https://huggingface.co/datasets/how2everything/how2train
https://huggingface.co/how2everything/how2judge
mailto:yapeic@umd.edu

1 Introduction
The ability to understand and generate how-to procedures is a key capability for large language models
(LLMs). On one hand, LLMs are increasingly used for practical how-to guidance: approximately 8.5% of
ChatGPT conversations fall under the How-To Advice category (Chatterji et al., 2025), with open-access
conversation datasets like WildChat and LMSYS-Chat (Zhao et al., 2024; Zheng et al., 2024) showing similar
trends (see Appendix §A). On the other hand, exposure to procedural content at all stages of model training
has been shown to improve downstream tasks that rely on reasoning and planning (e.g., pretraining: Ruis
et al., 2025; midtraining: Zhang et al., 2020; post-training: Brahman et al., 2024). Therefore, the ability to
evaluate and improve this core skill across a diverse set of procedures has the potential to unlock progress on
many downstream tasks.

Evaluating and optimizing end-to-end procedural validity is challenging in open-world settings, where real-
world procedures span diverse goals and domains without a task-specific executor or automatic oracle. One
key challenge is diversity : existing work is limited to narrow domains like cooking recipes (Lal et al., 2024;
Toyooka et al., 2025) or specific sources like how-to sites (Zhang et al., 2020; Yuan et al., 2023). Furthermore,
successful procedure generation hinges on the validity of an entire sequence of actions, requiring end-to-end
evaluation: prior work often focuses on subtasks, such as graph edge prediction (Sakaguchi et al., 2021) or
step ordering (Zhang et al., 2020; Lal et al., 2024; Anika and Miah, 2025). Finally, large-scale investigation
requires accurate yet efficient metrics: string-overlap metrics like BLEU are fast to compute but inaccurate,
and human annotation is accurate but expensive (Brahman et al., 2024).

To fill these gaps, we introduce How2Everything, a scalable framework to evaluate and train models for
step-by-step procedure generation. It comes with How2Mine, a web-scale pipeline to mine and refine
procedures, which we use to create How2Bench for evaluation and How2Train for training. In addition,
it introduces How2Score, an LLM-as-a-judge protocol to detect critical failures in model-generated steps,
along with How2Judge, an open 8B judge that makes How2Score low-cost, efficient, and reproducible at
scale. Our contributions are:

Contribution 1: A pipeline to collect realistic, diverse procedures at web-scale. Rather than drawing from
narrowly scoped how-to websites, How2Mine can scale to arbitrarily large collections of web documents
(Figure 1a). It ensures broad coverage by sampling from 14 different topics, as identified by WebOrga-
nizer (Wettig et al., 2025). Using multiple stages of filtering and refining, we remove low-quality procedures
and standardize format. We show the effectiveness of this pipeline by processing 980K web documents to
derive 351K procedures (§3).

Contribution 2: An accurate, low-cost, and reproducible protocol to evaluate procedure generation. All
existing protocols have limitations: efficient automatic metrics (e.g., perplexity on reference procedure, string
overlap between reference and model generation) are unreliable Lyu et al. (2021); Li et al. (2023), human
annotations are expensive and slow, and solely relying on LLM APIs as a judge is not reproducible. Therefore,
we establish How2Score, an evaluation protocol that checks whether a generated procedure contains a critical
failure, meaning an omission, an extraneous action, or a deviation that would prevent achieving the goal
under the stated constraints (see Table 1 for examples). We first validate this protocol by assessing agreement
between frontier LLM APIs as judges and human annotators on 200 examples, and note that, across 5 LLMs,
agreement with human majority is consistently high, ranging from 76.5 to 83.0%. Then, we use labels from
LLM APIs to distill How2Judge, a compact, 8B model for repeatable and efficient evaluation. This model
maintains high agreement with annotators (80.5%), enabling efficient assessment (§4).

Contribution 3: Mined procedures benchmark performance across large range ofmodel sizes and capabilities.
We reserve 7K of the 351K mined procedures for evaluation and create How2Bench. We find that How2Bench
can meaningfully rank models trained on vastly different amounts of compute (from just ≈ 10

21 FLOPs—e.g.,
a 1B model trained on 200B tokens—to the latest frontier models, such as GPT 5 OpenAI (2026)), and also
compare base models against instruct variants. This is a desirable property for a benchmark, as it enables
ranking models (Heineman et al., 2025) and establishing scaling laws (Xu et al., 2025) across compute budgets;
however, many benchmarks either saturate early in training or target frontier models, having near-zero
performance at smaller scales (e.g., Kazemi et al., 2025). In contrast, across training runs spanning 1B–32B
models, How2Bench shows clear scaling trends with both model size and training stage (Figure 1b; Table 8),

2

enabling the study of techniques to improve this key skill across the entire model training pipeline (§5).

Contribution4: Trainingonprocedures improveshow-togenerationwithnoout-of-domain regression. Beyond
measuring performance, the same scalable components that make How2Everything cheap to evaluate
also make it practical to optimize models on this task (Figure 1c). We use remaining samples in the 351K
mined procedures as How2Train for training. Across three models, RL on How2Train with How2Score
scored by How2Judge as a reward consistently improves How2Everything performance by >10 points.
Importantly, these improvements do not introduce regressions—and, in some cases even improve—on a
standard post-training evaluation suite Olmo et al. (2025), suggesting that procedure generation is a capability
useful across tasks (§6).

Contribution 5: Improvements in procedure generation are not driven by format compliance ormemorization.
Prior work suggests that some LLM capabilities—such as those related to knowledge—are acquired through
generalization over the course of the full training pipeline (Wang et al., 2025), while others can be exploited
via reinforcement learning (Sun et al., 2025a). Our analysis reveals that, while RL boosts procedure generation
capabilities, improvement in base models consistently yields better checkpoints after RL (§7.1). Further, we
show that although our evaluation examples are derived from the same web documents LLMs are pretrained
on, risks due to memorization are limited. Even after aggressively contaminating data, performance on
procedure generation only improves by a modest amount: +3 points for a 7B model (§7.2).

More broadly, this work offers a worked example of how pretraining web data can support a closed loop of
capabilityevaluationand improvementat scale. The web provides a virtually unbounded supply of open-ended,
naturally occurring real-world documents that can serve as reference anchors when execution-based verification
is infeasible. By mining and standardizing this data into an evaluable format, and by developing an evaluation
protocol that targets task-level validity and can be made reliable and reproducible at scale, we turn an
otherwise hard-to-measure behavior into a practical development loop.

2 ProblemSetting and RelatedWork
In this work, we use “procedure” to refer to a goal-conditioned sequence of actions. We distinguish between
descriptive procedures, where a model can generate textual representations of such sequences, and executable
procedures, where correctness is determined by execution—either in grounded environments with explicit state
transitions, such as formal transition systems (Samiei et al., 2025) or simulated environments (Puig et al.,
2018; Shridhar et al., 2021), or through internally executed reasoning strategies for problem solving (Mao
et al., 2024; Ruis et al., 2025). Our work focuses on real-world procedures, which fall under the first category.
While a model cannot actually file taxes or replace a kitchen faucet, the ability to accurately represent the
steps involved remains a core user-facing capability and a necessary prerequisite for downstream systems that
aim to support or automate parts of real-world processes.

Datasets for goal-conditionedprocedures. Within the descriptive procedural setting, dataset construction has
typically been constrained along two axes, limiting coverage of diverse real-world procedures. Many datasets
are restricted by topical domain, with common choices including cooking Bień et al., 2020; Toyooka et al., 2025;
Anika and Miah, 2025. Others are restricted by collection source, such as instructional platforms like WikiHow
and Instructables (Zhou et al., 2022; Bolotova-Baranova et al., 2023; Brahman et al., 2024; Uzunoglu et al.,
2024). Our work goes beyond these constraints by mining naturally occurring, goal-conditioned procedures
across 14 topics from the web.

Evaluation challenges for end-to-end procedural validity. Given these datasets, prior work has adopted a
range of task formulations to study procedural capabilities. Examples include edge prediction over step pairs
(Sakaguchi et al., 2021), step reordering (Anika and Miah, 2025), QA (Lal et al., 2024; Uzunoglu et al., 2024),
or constraint satisfaction (Yuan et al., 2023). In the setup where the task is pure generation (closest to
ours), models directly generate a step sequence given a goal and are typically evaluated with perplexity or
string-overlap metrics such as BLEU (Lyu et al., 2021; Li et al., 2023; Sakaguchi et al., 2021; Brahman et al.,
2024). Prior work, however, acknowledges that these metrics are insufficient proxies for procedural validity
and relies on human evaluation for more reliable signal (Lyu et al., 2021; Brahman et al., 2024). More recently,
LLM-as-a-judge protocols have been used as a general approach to scale evaluation for open-ended generation
(Zheng et al., 2023; Dubois et al., 2025), but generic preference-style judging can overemphasize surface

3

Table 1 Given a goal, list of resources, and target number of steps N (inferred from reference doc), the model generates
N steps. How2Score evaluates the generation by checking whether it contains any critical failure using How2Judge
(§4.4). For each example, we show a brief description of a representative critical failure, highlighting relevant steps.
More examples in §G.1.

Example (goal + resources + reference steps) Model-generated steps Critical
failure

Goal: [Crime & Law] Sell your share of a common property
apartment by following the required legal procedure for notifying
co-owners and transferring ownership.
Resources: notary; notarial document; letter with a list of
contents; receipt.

Reference: 1. Prepare a notification to all co-owners stating the
conditions of sale of your share. 2. Visit a notary to draw up a
notarial document including all sale conditions. 3. Distribute the
notarial document to all co-owners by letter with a list of contents,
obtaining a receipt from each. 4. Wait 30 days for co-owners to
express their desire to purchase your share. 5. Sell your share to a
third party.

Generator: Gemini 2.5 Pro
1. Engage a notary to draft a formal
notification of the intended sale for all
co-owners. 2. Send the notification via a
letter with a list of contents and keep the
postal receipt as proof. 3. Instruct the notary
to prepare the final sale agreement as a
notarial document. 4. Execute the transfer by
signing the notarial document in the presence
of the notary. 5. Receive the registered
notarial document and the final transaction
receipt from the notary.

Skips a
required
prerequisite
(the 30-day
waiting period)
before
completing the
transfer.

Goal: [Food & Dining] Prepare spiced glazed nuts with a crisp
candy glaze using a Crock Pot.
Resources: Crock Pot; nuts; melted butter; powdered sugar;
spices; racks; waxed paper.

Reference: 1. Preheat the Crock Pot on high for 15–20 minutes.
2. Add nuts to the Crock Pot. 3. Pour melted butter over the nuts
and stir. 4. Add powdered sugar and stir until completely blended.
5. Cover and cook on high for 15 minutes. 6. Remove the lid, set
the Crock Pot to low, and cook with the lid off for 2–3 hours,
stirring occasionally until the nuts have a crisp glaze. 7. Stir spices
over the nuts and stir to distribute. 8. Pour nuts onto racks or
waxed paper and let cool completely before serving or bagging.

Generator: Qwen 3 8B Instruct

1. Place the nuts in the Crock Pot. 2. Add
melted butter, powdered sugar, and spices to
the Crock Pot. 3. Cook on low heat, stirring
occasionally, until the glaze thickens. 4.
Transfer the nuts to racks to cool and dry. 5.
Cover the cooled nuts with waxed paper to
maintain crispness. 6. Let the glaze set for
several hours. 7. Ensure the nuts are
completely dry and crisp. 8. Serve or use as
desired.

Leaves critical
cooking times
and lid/heat
settings
unspecified
(e.g., high vs.
low and lid on
vs. off),
making the
procedure hard
to execute
reliably.

qualities like coherence or helpfulness, and thus fail to capture end-to-end procedural validity. Together,
these approaches highlight a fundamental reliability–scalability tradeoff, which we address by introducing a
validity-oriented evaluation protocol.

3 How2Mine: Extracting Realistic Step-by-Step Procedures from
theWeb

To evaluate end-to-end procedural validity at scale, we mine goal-conditioned step-by-step procedures from a
large web corpus to ensure broad topical coverage. As a proof of concept, we run How2Mine on 980,000 web
documents to extract 351,162 structured procedure instances (Figure 2). The pipeline scales straightforwardly
to larger corpora, making it possible to dynamically construct evaluation sets and training corpora without
manual curation.

3.1 SamplingWeb Pages for ProcedureMining
We source candidate documents from the DCLM web corpus (Li et al., 2025). Because tutorial-style documents
tend to have a high density of explicitly ordered, imperative steps, we restrict our document pool to those
labeled as Tutorial & How-to Guide by the WebOrganizer format classifier (Wettig et al., 2025).2 To ensure
equal topical coverage, we apply the WebOrganizer topic classifier and perform stratified sampling across 14
topics.3 Our final pool of 351K procedure instances spans 189K unique domains (we report top 10 domains
per topic in §B.1).

2How2Mine can be easily extended to extract valid procedures from other formats such as academic writing and knowledge
articles (see §B.2); for simplicity, we focus on a single format.

3See weborganizer.allen.ai for definitions and examples.

4

https://weborganizer.allen.ai

Figure 2 Given a sample of 980K topic-stratified web documents, How2Mine yields 351K procedure instances (goal +
resources list + reference steps), and can be easily scaled to larger corpora.

3.2 FromWebDocuments to Structured Procedures
Starting from this topic-stratified pool of tutorial documents, we run a multi-stage pipeline to extract, filter,
and post-process procedures. All LLM-based stages use GPT-4.1 OpenAI (2025), see prompts in §H.1. Using
the OpenAI batch API, running this pipeline over 980K documents issues 252K requests, costing 5,717 USD.

(1) Procedure extraction. Given a candidate web document, we first use an LLM to identify whether it
contains a well-formed sequential procedure and, if so, extract the goal and an ordered list of steps.

(2) Heuristics filter. We run simple heuristics-based checks to remove (i) candidates with fewer than 5 or
more than 15 steps to avoid trivial or overly complex procedures, and (ii) those with high n-gram overlap
within the extracted steps. See §B.3 for implementation details.

(3) LLM filter. We apply an LLM-based filter to exclude examples that (i) depend on specific named entities,
(ii) are purely mathematical calculations, (iii) require interacting with UI elements, (iv) involve open-ended
creative generation, (v) are non-sequential, or (vi) are unreasonable/nonsensical. These criteria are derived
from multiple rounds of data inspection (see §B.4 for the in-depth rationale).

(4)Post-processingand resourceextraction. For each remaining example, we rewrite the goal to be as specific
and deterministic as possible, explicitly stating the required constraints and expected outcome. Because
multiple distinct procedures can still satisfy a goal, we additionally list the resources (if any) referenced by
the steps in the reference procedure. See Table 1 for examples. Together, these edits narrow the space of valid
solutions.

(5) Final validation. Finally, we run an LLM-based sanity check to remove any remaining nonsensical or
otherwise invalid procedures.

Pipeline outputs. Each procedure instance is a structured record that includes a topic, goal, list of resources
(possibly empty), and reference steps. §B.5 shows one full example for each topic. From this pool, we
construct How2Bench by sampling 500 instances per topic (7,000 total), and use the remaining instances as
How2Train.

4 How2Score: Measuring Procedural Validity by Detecting Critical
Failures

Evaluating procedural generation comes with a trade-off between scalability and reliability. Reference-overlap
metrics are cheap but miscalibrated to procedural validity, while human evaluation is reliable but does not

5

scale (Li et al., 2023; Brahman et al., 2024). We introduce How2Score, an LLM-based evaluation protocol
that asks whether a generated procedure contains any critical failure that prevents achieving its goal. To
make scoring efficient and reproducible, we distill a frontier judge into How2Judge, an open 8B model, which
achieves 80.5% agreement with human annotators.

4.1 Defining Critical Failures in anOpen-World Setting
We take inspiration from the framing commonly used in process reward models (PRMs) for mathematical
reasoning (Lightman et al., 2023), where the earliest incorrect step identified by a verifier is treated as the
point of failure. In open-world procedures, however, steps are not directly executable, making it difficult to
localize a “first failure” automatically. We therefore develop a working definition and codebook by qualitatively
inspecting model outputs and iterating with human annotators.

Definition. We define a critical failure as an omission, extraneous action, contradiction, severe vagueness,
or other deviation from the reference that is severe enough to prevent achieving the goal, or to make the
procedure unusable as instructions. We use the reference procedure as an anchor, but aim not to penalize
alternative valid procedures or superficial differences. For example, if the goal is to make a terracotta pot as
a gift, a different gift message than the reference is not a critical failure. While what constitutes critical is
inherently subjective in this non-executable setting, this definition provides a practical proxy. Table 1 shows
representative critical failures; §G.1 provides additional examples, including non-critical variations.

Assumption of reference correctness. While rigorous filtering (§3) reduces noise, some references can still
contain errors, and How2Score may inherit this noise. As a sanity check, we prompt GPT-4.1 to judge if
each How2Bench reference procedure reasonably achieves the stated goal; it accepts 96.6% of examples as
valid. In our formulation, we use S

⋆ to make the task more deterministic and suitable for evaluation, not as a
perfect ground-truth solution.

4.2 Evaluation Protocol
Given an evaluation set D of examples x = (g,R, S

⋆
, Ŝ) (goal g, extracted resource list R, reference procedure

S
⋆, and model-generated procedure Ŝ), we use an LLM judge to identify critical failures. Each failure is

accompanied by a description and references to the relevant steps in S
⋆ and/or Ŝ. We provide the full

annotation codebook and examples of non-critical vs critical cases in the judge prompt in §H.3.

Binary score aggregation. From the judge output list, we derive a binary label: we assign has_failure if at
least one critical failure is identified, and no_failure otherwise. To report performance over D, we aggregate
the binary labels into a success rate (the fraction of examples labeled no_failure). Formally,

Score(D) = 1
∣D∣ ∑x∈D

I[J(g,R, S
⋆
, Ŝ) = no_failure].

where J(⋅) denotes the derived binary judgment, answering the question: “Does this procedure contain any
critical failure?” Compared to checking for the first failure as in the math PRM setup, this aggregation yields
higher inter-annotator agreement (see §4.3). We therefore adopt this formulation, which remains aligned with
our downstream objective. For transparency, we still ask the judge to enumerate all identified failures.

4.3 Validation via Human Annotations
To validate our definition of critical failures, we ask human annotators to list all critical failures they observe
using the evaluation protocol in §4.2. We recruit three annotators via Prolific to label 200 examples (pre-
screened to avoid procedures requiring specialized domain knowledge), paying an average hourly rate of 28
USD (total cost: 3,600 USD). See §C.1 for details.

Annotator training and pilot studies. In early pilots (300 annotations), many annotators either flagged any
difference from the reference as critical, or overlooked indisputable failures masked by coherent surface form.4

As a result, initial inter-annotator agreement was low (Krippendorff’s α = 0.273). We iteratively refined the
4One example of such a failure is when the procedure first says “cut the wood board into 5 pieces of equal size”, but later says

to “place the pieces on the table with the largest piece on top and the smallest piece on the bottom”. This is a clear inconsistency.

6

training materials and added more examples to clarify the boundary between non-critical variations and
critical failures. For the final round, we screened annotators with a short qualification test and selected the
three who best demonstrated understanding to label 200 examples.

Inter-annotator agreement. With binary score aggregation, we observe Krippendorff’s α = 0.593. Given the
non-executable, open-world setting and the existence of multiple valid procedures per goal, we do not expect
near-perfect agreement; instead, we target a metric that is stable for relative comparisons (§5) and usable as
an RL reward (§6). If we instead require agreement on the location of the first failure (as in math PRMs),
agreement drops (α = 0.307), motivating our use of binary aggregation.

Evaluating LLM judges against human labels. We obtain annotations from various LLM judges on the same
200 examples used to obtain human annotations, and compute their percentage agreement with the human
majority labels. As shown in Figure 3, GPT 5 has the highest overall agreement (83.0%) and is well-calibrated
across classes (83.7% on human-majority has_failure cases; 82.4% on no_failure cases). To contextualize
these results, we measure leave-one-out agreement among human annotators, which ranges from 84.7%
to 88.5%. GPT 5’s agreement falls within a few percentage points of this range, suggesting performance
comparable to individual annotators.

Figure 3 Agreement between LLM judges and the human majority label on critical-failure detection (N=200), reported
overall and stratified by the human-majority class (has_failure/no_failure). §H.3 for the judge prompt; §C.1 for
annotation details.

4.4 Distilling a Cost-Effective Judge
While GPT 5 OpenAI (2026) is shown to have strong agreement with human labels in §4.3, evaluating
7,000 examples with it costs around $15. We therefore use GPT 5 as a teacher judge and distill it into
How2Judge, a smaller Qwen 3 8B model for stable, low-cost large-scale evaluation. We collect 73K GPT
5 annotations on outputs from a diverse set of generator models,5 and deduplicate to remove any overlap
with the human-annotated set in §4.3. We then finetune Qwen 3 8B on this dataset for three epochs. On the
human-labeled set in §4.3, How2Judge achieves 90.5% agreement with GPT 5 and 80.5% agreement with
the human majority label. It is also relatively well-balanced across classes, with 79.6% human agreement
on has_failure and 81.4% on no_failure (Figure 3), making it a cost-effective alternative for large-scale

5These include three 1B checkpoints, four 7B checkpoints, three 32B checkpoints, and four closed-source models.

7

evaluation (§5) and for serving as a reward function for RL training (§6). See more details on distillation in
§C.2.

5 How2Bench: Evaluating Performance on Step-by-Step Procedure
Generation

Equipped with How2Score and How2Judge, we run systematic evaluations on a range of models. We create
How2Bench by sampling 500 procedures per topic from the data created in §3, totaling 7,000 examples.

Figure 4 How2Bench results on selected models. We report How2Score computed with How2Judge along with
the average generated tokens for each model. The average reference length is 97.44 tokens. For open models, Base
denotes the final non-post-trained checkpoint, and Instruct denotes the post-trained checkpoint.

5.1 Inference Setup
At inference time, the model receives the goal g, resource list R, and required step count n = ∣S⋆∣, and is asked
to output a procedure Ŝ with exactly n steps. While conditioning generations on R and n may not reflect
real-world usage, it is an evaluation control to reduce degrees of freedom and improve comparability across
model outputs. We enforce length control by requiring each step to be a single, concise sentence containing
one main action, and asking the model to closely follow the concision level in the provided examples. See
setup details in §D.1 and prompts in §H.2.

5.2 Evaluation Results and Analysis
We use How2Score with How2Judge (§4.4) to evaluate a range of open and closed models, and report
the main results in Figure 1b and Figure 4. Performance scales with model size and training stage, and we
observe a noticeable gap between open and closed models.

No evidence of LLM judge self-preference bias. A common concern with LLM-as-a-judge evaluation is
self-preference: a judge might favor outputs from models in its own family (Zheng et al., 2023). We collect
outputs from models in the GPT, Gemini, and Claude families and recompute How2Score using models

8

from these families as judges. As shown in Figure 5, although absolute values vary, the relative model ranking
is unchanged across different judges.

Figure 5 Cross-judge robustness check for self-preference bias on closed models spanning the GPT, Gemini, and
Claude families: we rescore the same generations with four judges (How2Judge, GPT 5, Gemini 2.5 Pro, Claude 4.5
Opus) and find the ranking is unchanged.

How2Bench shows clear scaling behavior across model sizes and training stages. Besides comparing fully
trained base and instruct models, we also measure performance at intermediate steps of model training pipeline
using pretraining, midtraining, and post-training Olmo checkpoints (OLMo et al., 2025; Olmo et al., 2025). 1b
shows that across five Olmo training runs (Olmo 2: 1B/7B/32B; Olmo 3: 7B/32B),6 How2Bench exhibits
smooth scaling across both model size and training stage, with a consistent ordering of model performance. We
also observe the emergence of non-trivial performance by about 5% into pretraining for a 1B model (around
10

21 training FLOPs), after which performance continues to improve. The sensitivity of How2Bench to
gains from all training indicates that it probes a core, general capability, making it well-suited for performance
forecasting (Xu et al., 2025).

Early emergence of procedural formatting. We find that surface-level procedural formatting stabilizes early in
training, particularly for larger models. We track simple formatting proxies across checkpoints: step-count
mismatch relative to the reference, duplicate-step frequency, and n-gram repetition. Over five Olmo runs,
formatting errors drop during early pretraining and quickly plateau while How2Score continues to improve.
This decoupling resembles an emergence-like pattern: surface-formatting behavior stabilizes early, while
procedural validity keeps improving. Thus, the continued gains we observe later in training are unlikely to
be driven primarily by correcting surface-formatting errors, and instead reflect improvements in end-to-end
procedural validity (details in §D.3).

How2Score is not simply reducible to reference-step likelihood. To test whether our task is simply reducible
to perplexity over the reference, we compare checkpoint ordering under How2Everything to checkpoint
ordering by conditional perplexity on the reference steps. Across five Olmo runs,7 the Spearman correlation
between checkpoint rank by How2Everything and rank by perplexity ranges from 0.233 (Olmo 2 32B)
to 0.967 (Olmo 2 1B),8 indicating that How2Score is not simply measuring conditional likelihood of the
reference procedure (full results in §D.4).

6Olmo checkpoints corresponding to midtraining stage are labeled “stage 2 pretraining”; see Table 8 for exact IDs.
7We use 9 checkpoints per run: 8 stage-1 pretraining checkpoints plus the stage-2 midtrained checkpoint.
8With intermediate values 0.667 (Olmo 2 7B), 0.867 (Olmo 3 7B), and 0.483 (Olmo 3 32B).

9

Controlling for topic, required step count is a monotonic difficulty knob. To better interpret aggregate
scores and enable difficulty-controlled slices of How2Bench, we examine simple instance properties that
correlate with How2Score. We find that reference step count ∣S⋆∣ is the dominant predictor across models:
procedures requiring more steps are consistently harder, making ∣S⋆∣ a simple, monotonic difficulty knob
(details in §D.5).

Qualitative examples of common failure patterns. To study which non-formatting failures occur, we perform a
small-scale qualitative analysis over model generations. While we occasionally observe refusals (primarily
in frontier models), most errors fall into the following types: critical omissions of required actions; missing
parameters (e.g., times, quantities, temperatures) that make steps non-executable; wrong values for critical
parameters; unsafe or invalid actions; and internal contradictions across steps. See §G.1 for more details on
this analysis.

6 Improving Step-by-Step Procedure Generationwith RL
Beyond serving as an evaluation protocol, How2Score and How2Judge can also be used as a practical
RL reward for improving goal-conditioned step-by-step procedure generation, with gains that persist under
external judges and without systematic regressions on standard out-of-domain benchmarks. These results
suggest How2Everything provides a practical framework for both evaluating and improving goal-conditioned
step-by-step procedure generation, and that How2Score-based RL can complement existing post-training
pipelines as an additional optimization target.

Table2 Results before and after RL with How2Score as reward (step 1000). We report performance on How2Bench
(in-domain) and 12 standard out-of-domain benchmarks. ∆ columns show changes relative to the original checkpoint;
∆OOD is the mean out-of-domain change. Green indicates positive change and pink shows negative change.

Qwen3-4B-Inst Qwen3-8B-Inst Olmo-3-7B-Think

Benchmark Base +RL ∆ Base +RL ∆ Base +RL ∆

In-domain

How2Bench 30.29 43.52 +13.23 38.52 48.62 +10.10 27.30 37.89 +10.59

Out-of-domain

MMLU-Pro 60.16 61.70 +1.54 62.16 63.11 +0.95 44.54 49.61 +5.07

GPQA 44.87 44.64 -0.23 54.02 53.79 -0.23 46.21 47.10 +0.89

ZebraLogic 82.4 81.2 -1.2 85.2 85.7 +0.5 65.6 63.3 -2.3

AlpacaEval 44.78 47.73 +2.95 58.44 58.76 +0.32 49.75 51.19 +1.44

HumanEval+ 71.95 75.43 +3.48 81.28 79.57 -1.71 90.49 89.45 -1.04

LiveCodeBench 85.6 85.38 -0.22 86.32 86.11 -0.21 74.85 72.40 -2.45

MBPP+ 67.46 66.98 -0.48 68.65 69.31 +0.66 64.81 64.29 -0.52

GSM8K 94.09 93.78 -0.31 95.68 95.30 -0.38 94.92 95.30 +0.38

Minerva 90.38 90.45 +0.07 91.20 91.92 +0.72 94.44 94.62 +0.18

Omega 42.2 39.4 -2.8 44.4 44.4 0.00 44.6 47.0 +2.4

AIME24 60.42 60.42 0.00 61.15 59.06 -2.09 55.52 58.65 +3.13

AIME25 46.04 49.48 +3.44 47.29 49.48 +2.19 38.54 43.96 +5.42

∆OOD +0.52 +0.06 +1.05

10

6.1 Training Setup
We create a training set by sampling 100K examples from How2Train, balanced across 14 topics and with
low semantic similarity to How2Bench instances (see §E.1).

For SFT, we fine-tune base and instruction-tuned checkpoints of Qwen 3 4B and 8B Qwen Team (2025a), and
OLMo 3 7B Olmo et al. (2025) for one epoch. For RL, we train Qwen 3 4B Instruct and 8B Instruct Qwen
Team (2025a), and OLMo 3 7B Think Olmo et al. (2025),9 using Group Relative Policy Optimization (GRPO)
(Shao et al., 2024) for 1000 optimizer steps with three rewards: (i) How2Score computed by How2Judge,
(ii) a step-format verifier, and (iii) a reference-calibrated length reward to prevent length gaming. See §E.2 for
full details.

6.2 Results and Analysis
Length control effectively prevents length gaming in RL. With the reference-calibrated length reward,
generations stay close to the reference length (∣gen∣/∣ref∣ ≈ 1.0). Without it, models inflate length (up to
1.34×–1.53× the reference) and achieve large apparent How2Bench gains consistent with length gaming
(details in §E.4). This controls a major confound in LLM-as-judge settings where judges are prone to verbosity
bias (§5.1).

RL improvements persist under external judges. To test whether these gains are specific to How2Judge
(which was used to compute How2Score during training), we re-evaluate the same RL-trained model
generations with external judges (GPT 5 and Gemini 2.5 Pro), and find the gains persist. See §E.5 for details.

RL improves How2Bench performancewithout systematic out-of-domain degradation. Table 2 shows that
RL-trained models improve How2Bench while retaining performance on standard out-of-domain evaluations:
changes are mixed but generally modest (improving some benchmarks while regressing on others), with no
evidence of systematic degradation. This suggests that our How2Score-based reward can complement
existing post-training pipelines as an additional RL signal. The out-of-domain suite spans knowledge, chat,
math, code, and logical reasoning, see §E.6 for details.

Additional SFT stage yields limited gains on instruct checkpoints. We find that SFT can yield small gains
when applied to base model checkpoints, but does not improve instruction-tuned checkpoints (see §E.3). One
plausible explanation is objective mismatch: SFT maximizes likelihood of a single reference text per goal,
which need not align with minimizing critical failures under How2Score (Stiennon et al., 2022; Xie et al.,
2025).

7 Robustness to Format andMemorization Confounds
Because How2Bench is scored with an LLM judge and our evaluation examples are mined from the web,
improvements in How2Score could plausibly arise from two confounding factors: (1) better compliance with
an implicit task format, and (2) source-document memorization. We run targeted analyses to stress-test each
explanation, and find evidence that neither can account for the observed gains.

7.1 Confound 1: Implicit Task Format Compliance
To test whether gains from post-training can be explained by learning an implicit task format, we use two
complementary diagnostics. Pretrainingmaturity axis: we hold the post-training recipe fixed and vary the
pretraining checkpoint. If gains were primarily format-level, they should be similarly recoverable from weaker
checkpoints. Data coverage axis: we hold the base model fixed and run RL using topic-restricted training
data. If gains primarily come from format, they should transfer broadly across topics, largely independent of
which topics appear in training.

Diagnostic 1: Gains require pretrainingmaturity. We apply the same post-training recipe (SFT followed by
RL) starting from varying intermediate Olmo 3 7B pretraining checkpoints. Figure 6 shows that SFT gains

9Thinking mode refers to the presence of explicit intermediate reasoning. Qwen models integrate instruction-following and
reasoning in a single checkpoint, whereas OLMo provides separate Instruct and Think checkpoints.

11

Figure 6 Post-training from different Olmo 3 7B pretraining checkpoints (x-axis). RL gains grow substantially at later
checkpoints, while SFT yields modest improvements.

are similar across checkpoints (3.39 to 5.36),10 while RL gains increase with pretraining FLOPs (3.56 at 10%
to 20.33 at 100%), accounting for most of the improvement at late checkpoints. This pattern aligns with prior
findings that SFT mainly shapes surface-level behavior, while RL amplifies pretrained capabilities (Ouyang
et al., 2022; Zhao et al., 2025), suggesting that How2Bench is not primarily format-driven.

Diagnostic 2: Gains depend on data topic coverage. Next, we test whether improvements depend on broad
topic coverage or can be obtained by learning a generic output format from a narrow topic. Via embedding
analysis, we select two topics with contrasting diversity: Science, Math & Technology, which is broadly
dispersed in embedding space, and Food & Dining, which forms a specialized cluster. We run RL on Qwen
3 8B and find that training on all topics yields the best overall performance (+10.10), while science-only
RL generalizes strongly to many other topics (+9.41 overall); in contrast, dining-only RL still transfers but
more weakly (+5.55 overall). Full results in §E.7. Together, these results suggest that RL trained on a single
topic can transfer, but broad topic coverage yields the largest gains, consistent with improvements driven by
content coverage rather than a generic output format.

7.2 Confound 2: Memorization of Source Documents
To probe memorization effects, we vary how often a fixed set of source documents appears during midtraining
and measure How2Score on procedure instances extracted from those documents.

Midtraining. We focus on midtraining, a stage where benchmark leakage can spuriously boost task scores
(Olmo et al., 2025). Starting from the final pretraining checkpoints of Olmo 3 7B and 32B, we midtrain for
10B tokens while controlling for the exposure frequency of the documents (0, 1, 3, 6, or 10 occurrences). The
0-occurrence control serves as a baseline where the target documents are not seen.

Memorizing source documents yields limited gains onHow2Score. We run our pipeline on the midtraining
documents to create an evaluation set of 13,500 examples, evenly balanced across the five occurrence groups.
Table 3 shows How2Score of our midtrained models on this evaluation set. As exposure increases, document
perplexity drops sharply (for Olmo 3 7B: 10.4 → 1.4; for Olmo 3 32B: 8.0 → 1.2), indicating substantially
higher fit to the source documents. By contrast, How2Score improves only modestly and non-monotonically
(peaking at +3.3 for 7B and +6.1 for 32B), suggesting that improvements in How2Score are not explained

10Unlike §6.2, the SFT step yields additional performance improvement over RL alone when starting from base models.

12

Table 3 Midtrainingmemorization sensitivity. As document occurrence increases, perplexity drops sharply, while
How2Score only improves modestly and non-monotonically.

Model Metric ↓ Doc occurrences duringmidtraining
0 1 3 6 10

Olmo 3 7B Doc perplexity 10.4 8.5 6.1 3.0 1.4
How2Score 14.0 17.3 15.8 15.7 16.5

Olmo 3 32B Doc perplexity 8.0 6.0 3.5 1.4 1.2
How2Score 33.3 39.3 39.4 38.1 37.9

simply by repeatedly seeing the underlying source documents.

Impact Statement
We introduce How2Everything, a framework for mining and evaluating goal-conditioned step-by-step
procedures from large-scale web corpora. Since step-by-step procedure generation is an important and
commonly used capability of LLMs, providing measurement and data for improving it has practical and broad
positive impacts. Our work enables more reliable evaluation of procedural instruction quality at scale, and
provides a practical reward signal for improving models’ end-to-end procedural validity. Altogether, it could
benefit user-facing assistants in domains such as troubleshooting, education, and everyday planning.

Risks and negative societal impact. Because our data are derived from web documents, the extracted
procedures may reflect societal biases present online. In addition, “how-to” instructions can be safety-sensitive
(e.g., health, legal, chemicals), and misuse could enable harmful behavior if models are trained to generate
unsafe instructions.

Mitigations. How2Score is an evaluation proxy rather than a guarantee of real-world correctness; it is
not a substitute for expert review or execution-based verification in safety-critical settings. Prior to release,
we will apply additional safety and privacy filtering (e.g., removing procedures that involve regulated or
high-risk activities and removing personally identifiable information where present) and provide documentation
describing intended use and known limitations. We will release the benchmark split, prompts, and distilled
judge weights to support reproducible evaluation without requiring access to proprietary judge models.

13

References
A. Anika and M. M. M. Miah. Evaluating llms’ reasoning over ordered procedural steps, 2025. URL https:

//arxiv.org/abs/2511.04688.

M. Bień, M. Gilski, M. Maciejewska, W. Taisner, D. Wisniewski, and A. Lawrynowicz. RecipeNLG: A cooking recipes
dataset for semi-structured text generation. In B. Davis, Y. Graham, J. Kelleher, and Y. Sripada, editors, Proceedings
of the 13th International Conference on Natural Language Generation, pages 22–28, Dublin, Ireland, Dec. 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.inlg-1.4. URL https://aclanthology.org/2020.
inlg-1.4/.

V. Bolotova-Baranova, V. Blinov, S. Filippova, F. Scholer, and M. Sanderson. WikiHowQA: A comprehensive
benchmark for multi-document non-factoid question answering. In A. Rogers, J. Boyd-Graber, and N. Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 5291–5314, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.290. URL https://aclanthology.org/2023.acl-long.290/.

F. Brahman, C. Bhagavatula, V. Pyatkin, J. D. Hwang, X. L. Li, H. J. Arai, S. Sanyal, K. Sakaguchi, X. Ren, and
Y. Choi. Plasma: Making small language models better procedural knowledge models for (counterfactual) planning,
2024. URL https://arxiv.org/abs/2305.19472.

A. Chatterji, T. Cunningham, D. J. Deming, Z. Hitzig, C. Ong, C. Y. Shan, and K. Wadman. How people use chatgpt.
Technical report, National Bureau of Economic Research, 2025.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano, C. Hesse,
and J. Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A simple way to debias
automatic evaluators, 2025. URL https://arxiv.org/abs/2404.04475.

Google. Gemini 2.5 Pro model card, 2025. URL https://modelcards.withgoogle.com/assets/documents/gemini-2.
5-pro.pdf. Accessed: 2026-01-29.

Y. Gu, O. Tafjord, B. Kuehl, D. Haddad, J. Dodge, and H. Hajishirzi. Olmes: A standard for language model
evaluations, 2025. URL https://arxiv.org/abs/2406.08446.

D. Heineman, V. Hofmann, I. Magnusson, Y. Gu, N. A. Smith, H. Hajishirzi, K. Lo, and J. Dodge. Signal and noise: A
framework for reducing uncertainty in language model evaluation, 2025. URL https://arxiv.org/abs/2508.13144.

N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-Lezama, K. Sen, and I. Stoica. Livecodebench:
Holistic and contamination free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

M. Kazemi, B. Fatemi, H. Bansal, J. Palowitch, C. Anastasiou, S. V. Mehta, L. K. Jain, V. Aglietti, D. Jindal, P. Chen,
N. Dikkala, G. Tyen, X. Liu, U. Shalit, S. Chiappa, K. Olszewska, Y. Tay, V. Q. Tran, Q. V. Le, and O. Firat.
Big-bench extra hard, 2025. URL https://arxiv.org/abs/2502.19187.

Y. K. Lal, V. Cohen, N. Chambers, N. Balasubramanian, and R. Mooney. CaT-bench: Benchmarking language model
understanding of causal and temporal dependencies in plans. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen, editors,
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 19336–19354, Miami,
Florida, USA, Nov. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1077. URL
https://aclanthology.org/2024.emnlp-main.1077/.

A. Lewkowycz, A. Andreassen, D. Dohan, E. Dyer, H. Michalewski, V. Ramasesh, A. Slone, C. Anil, I. Schlag,
T. Gutman-Solo, Y. Wu, B. Neyshabur, G. Gur-Ari, and V. Misra. Solving quantitative reasoning problems with
language models, 2022. URL https://arxiv.org/abs/2206.14858.

J. Li, A. Fang, G. Smyrnis, M. Ivgi, M. Jordan, S. Gadre, H. Bansal, E. Guha, S. Keh, K. Arora, S. Garg, R. Xin,
N. Muennighoff, R. Heckel, J. Mercat, M. Chen, S. Gururangan, M. Wortsman, A. Albalak, Y. Bitton, M. Nezhurina,
A. Abbas, C.-Y. Hsieh, D. Ghosh, J. Gardner, M. Kilian, H. Zhang, R. Shao, S. Pratt, S. Sanyal, G. Ilharco, G. Daras,
K. Marathe, A. Gokaslan, J. Zhang, K. Chandu, T. Nguyen, I. Vasiljevic, S. Kakade, S. Song, S. Sanghavi, F. Faghri,
S. Oh, L. Zettlemoyer, K. Lo, A. El-Nouby, H. Pouransari, A. Toshev, S. Wang, D. Groeneveld, L. Soldaini, P. W.
Koh, J. Jitsev, T. Kollar, A. G. Dimakis, Y. Carmon, A. Dave, L. Schmidt, and V. Shankar. Datacomp-lm: In
search of the next generation of training sets for language models, 2025. URL https://arxiv.org/abs/2406.11794.

14

https://arxiv.org/abs/2511.04688
https://arxiv.org/abs/2511.04688
https://aclanthology.org/2020.inlg-1.4/
https://aclanthology.org/2020.inlg-1.4/
https://aclanthology.org/2023.acl-long.290/
https://arxiv.org/abs/2305.19472
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2404.04475
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://modelcards.withgoogle.com/assets/documents/gemini-2.5-pro.pdf
https://arxiv.org/abs/2406.08446
https://arxiv.org/abs/2508.13144
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2502.19187
https://aclanthology.org/2024.emnlp-main.1077/
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2406.11794

X. Li, Y. Cao, M. Chen, and A. Sun. Take a break in the middle: Investigating subgoals towards hierarchical script
generation. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, pages 10129–10147, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-acl.644. URL https://aclanthology.org/2023.findings-acl.644/.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman, I. Sutskever, and K. Cobbe.
Let’s verify step by step, 2023. URL https://arxiv.org/abs/2305.20050.

B. Y. Lin, R. L. Bras, K. Richardson, A. Sabharwal, R. Poovendran, P. Clark, and Y. Choi. Zebralogic: On the scaling
limits of llms for logical reasoning, 2025. URL https://arxiv.org/abs/2502.01100.

J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by chatgpt really correct? rigorous evaluation of
large language models for code generation, 2023. URL https://arxiv.org/abs/2305.01210.

Q. Lyu, L. Zhang, and C. Callison-Burch. Goal-oriented script construction. In A. Belz, A. Fan, E. Reiter, and
Y. Sripada, editors, Proceedings of the 14th International Conference on Natural Language Generation, pages 184–200,
Aberdeen, Scotland, UK, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.inlg-1.19.
URL https://aclanthology.org/2021.inlg-1.19/.

Y. Mao, Y. Kim, and Y. Zhou. Champ: A competition-level dataset for fine-grained analyses of llms’ mathematical
reasoning capabilities, 2024. URL https://arxiv.org/abs/2401.06961.

T. Olmo, :, A. Ettinger, A. Bertsch, B. Kuehl, D. Graham, D. Heineman, D. Groeneveld, F. Brahman, F. Timbers,
H. Ivison, J. Morrison, J. Poznanski, K. Lo, L. Soldaini, M. Jordan, M. Chen, M. Noukhovitch, N. Lambert, P. Walsh,
P. Dasigi, R. Berry, S. Malik, S. Shah, S. Geng, S. Arora, S. Gupta, T. Anderson, T. Xiao, T. Murray, T. Romero,
V. Graf, A. Asai, A. Bhagia, A. Wettig, A. Liu, A. Rangapur, C. Anastasiades, C. Huang, D. Schwenk, H. Trivedi,
I. Magnusson, J. Lochner, J. Liu, L. J. V. Miranda, M. Sap, M. Morgan, M. Schmitz, M. Guerquin, M. Wilson,
R. Huff, R. L. Bras, R. Xin, R. Shao, S. Skjonsberg, S. Z. Shen, S. S. Li, T. Wilde, V. Pyatkin, W. Merrill, Y. Chang,
Y. Gu, Z. Zeng, A. Sabharwal, L. Zettlemoyer, P. W. Koh, A. Farhadi, N. A. Smith, and H. Hajishirzi. Olmo 3,
2025. URL https://arxiv.org/abs/2512.13961.

T. OLMo, P. Walsh, L. Soldaini, D. Groeneveld, K. Lo, S. Arora, A. Bhagia, Y. Gu, S. Huang, M. Jordan, N. Lambert,
D. Schwenk, O. Tafjord, T. Anderson, D. Atkinson, F. Brahman, C. Clark, P. Dasigi, N. Dziri, A. Ettinger,
M. Guerquin, D. Heineman, H. Ivison, P. W. Koh, J. Liu, S. Malik, W. Merrill, L. J. V. Miranda, J. Morrison,
T. Murray, C. Nam, J. Poznanski, V. Pyatkin, A. Rangapur, M. Schmitz, S. Skjonsberg, D. Wadden, C. Wilhelm,
M. Wilson, L. Zettlemoyer, A. Farhadi, N. A. Smith, and H. Hajishirzi. 2 olmo 2 furious, 2025. URL https:
//arxiv.org/abs/2501.00656.

OpenAI. Introducing GPT-4.1 in the API, 2025. URL https://openai.com/index/gpt-4-1/. Accessed: 2026-01-29.

OpenAI. GPT-5 system card, 2026. URL https://arxiv.org/abs/2601.03267.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray,
J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe.
Training language models to follow instructions with human feedback, 2022. URL https://arxiv.org/abs/2203.
02155.

X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. Virtualhome: Simulating household activities
via programs, 2018. URL https://arxiv.org/abs/1806.07011.

Qwen Team. Qwen2.5 technical report, 2024. URL https://arxiv.org/abs/2412.15115.

Qwen Team. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Qwen Team. Qwen3-Embedding-0.6B model card, 2025b. URL https://huggingface.co/Qwen/Qwen3-Embedding-0.6B.
Accessed: 2026-01-29.

D. Rein, B. L. Hou, A. C. Stickland, J. Petty, R. Y. Pang, J. Dirani, J. Michael, and S. R. Bowman. GPQA:
A graduate-level google-proof q&a benchmark. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

L. Ruis, M. Mozes, J. Bae, S. R. Kamalakara, D. Talupuru, A. Locatelli, R. Kirk, T. Rocktäschel, E. Grefenstette,
and M. Bartolo. Procedural knowledge in pretraining drives reasoning in large language models, 2025. URL
https://arxiv.org/abs/2411.12580.

K. Sakaguchi, C. Bhagavatula, R. L. Bras, N. Tandon, P. Clark, and Y. Choi. proscript: Partially ordered scripts
generation via pre-trained language models, 2021. URL https://arxiv.org/abs/2104.08251.

15

https://aclanthology.org/2023.findings-acl.644/
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2305.01210
https://aclanthology.org/2021.inlg-1.19/
https://arxiv.org/abs/2401.06961
https://arxiv.org/abs/2512.13961
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://openai.com/index/gpt-4-1/
https://arxiv.org/abs/2601.03267
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/1806.07011
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2505.09388
https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2411.12580
https://arxiv.org/abs/2104.08251

M. Samiei, M. Mansouri, and M. S. Baghshah. The illusion of procedural reasoning: Measuring long-horizon fsm
execution in llms, 2025. URL https://arxiv.org/abs/2511.14777.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. K. Li, Y. Wu, and D. Guo. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

M. Shridhar, X. Yuan, M.-A. Côté, Y. Bisk, A. Trischler, and M. Hausknecht. Alfworld: Aligning text and embodied
environments for interactive learning, 2021. URL https://arxiv.org/abs/2010.03768.

N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. Christiano. Learning
to summarize from human feedback, 2022. URL https://arxiv.org/abs/2009.01325.

Y. Sun, Y. Cao, P. Huang, H. Bai, H. Hajishirzi, N. Dziri, and D. Song. Rl grokking recipe: How does rl unlock and
transfer new algorithms in llms?, 2025a. URL https://arxiv.org/abs/2509.21016.

Y. Sun, S. Hu, G. Zhou, K. Zheng, H. Hajishirzi, N. Dziri, and D. Song. Omega: Can llms reason outside the
box in math? evaluating exploratory, compositional, and transformative generalization, 2025b. URL https:
//arxiv.org/abs/2506.18880.

M. Toyooka, K. Aizawa, and Y. Yamakata. A highly clean recipe dataset with ingredient states annotation for state
probing task, 2025. URL https://arxiv.org/abs/2507.17232.

A. Uzunoglu, A. R. Safa, and G. G. Şahin. Paradise: Evaluating implicit planning skills of language models with
procedural warnings and tips dataset, 2024. URL https://arxiv.org/abs/2403.03167.

X. Wang, A. Antoniades, Y. Elazar, A. Amayuelas, A. Albalak, K. Zhang, and W. Y. Wang. Generalization v.s.
memorization: Tracing language models’ capabilities back to pretraining data, 2025. URL https://arxiv.org/abs/
2407.14985.

Y. Wang, X. Ma, G. Zhang, Y. Ni, A. Chandra, S. Guo, W. Ren, A. Arulraj, X. He, Z. Jiang, T. Li, M. Ku,
K. Wang, A. Zhuang, R. Fan, X. Yue, and W. Chen. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark, 2024. URL https://arxiv.org/abs/2406.01574.

A. Wettig, K. Lo, S. Min, H. Hajishirzi, D. Chen, and L. Soldaini. Organize the web: Constructing domains
enhances pre-training data curation. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=boSqwdvJVC.

Z. Xie, J. Chen, L. Chen, W. Mao, J. Xu, and L. Kong. Teaching language models to critique via reinforcement
learning, 2025. URL https://arxiv.org/abs/2502.03492.

C. Xu, K. Chen, X. Li, K. Shen, and C. Li. Unveiling downstream performance scaling of llms: A clustering-based
perspective, 2025. URL https://arxiv.org/abs/2502.17262.

S. Yuan, J. Chen, Z. Fu, X. Ge, S. Shah, C. Jankowski, Y. Xiao, and D. Yang. Distilling script knowledge
from large language models for constrained language planning. In A. Rogers, J. Boyd-Graber, and N. Okazaki,
editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 4303–4325, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.236. URL https://aclanthology.org/2023.acl-long.236/.

L. Zhang, Q. Lyu, and C. Callison-Burch. Reasoning about goals, steps, and temporal ordering with WikiHow. In
B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4630–4639, Online, Nov. 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.374. URL https://aclanthology.org/2020.emnlp-main.374/.

R. Zhao, A. Meterez, S. Kakade, C. Pehlevan, S. Jelassi, and E. Malach. Echo chamber: Rl post-training amplifies
behaviors learned in pretraining, 2025. URL https://arxiv.org/abs/2504.07912.

W. Zhao, X. Ren, J. Hessel, C. Cardie, Y. Choi, and Y. Deng. Wildchat: 1m chatgpt interaction logs in the wild, 2024.
URL https://arxiv.org/abs/2405.01470.

L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang,
J. E. Gonzalez, and I. Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. URL https:
//arxiv.org/abs/2306.05685.

L. Zheng, W.-L. Chiang, Y. Sheng, T. Li, S. Zhuang, Z. Wu, Y. Zhuang, Z. Li, Z. Lin, E. P. Xing, J. E. Gonzalez,
I. Stoica, and H. Zhang. Lmsys-chat-1m: A large-scale real-world llm conversation dataset, 2024. URL https:
//arxiv.org/abs/2309.11998.

16

https://arxiv.org/abs/2511.14777
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2509.21016
https://arxiv.org/abs/2506.18880
https://arxiv.org/abs/2506.18880
https://arxiv.org/abs/2507.17232
https://arxiv.org/abs/2403.03167
https://arxiv.org/abs/2407.14985
https://arxiv.org/abs/2407.14985
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=boSqwdvJVC
https://arxiv.org/abs/2502.03492
https://arxiv.org/abs/2502.17262
https://aclanthology.org/2023.acl-long.236/
https://aclanthology.org/2020.emnlp-main.374/
https://arxiv.org/abs/2504.07912
https://arxiv.org/abs/2405.01470
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998

S. Zhou, L. Zhang, Y. Yang, Q. Lyu, P. Yin, C. Callison-Burch, and G. Neubig. Show me more details: Discovering
hierarchies of procedures from semi-structured web data. In S. Muresan, P. Nakov, and A. Villavicencio, editors,
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 2998–3012, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.214. URL https://aclanthology.org/2022.acl-long.214/.

17

https://aclanthology.org/2022.acl-long.214/

A Motivational analysis of query type distribution
Chatterji et al. (2025) reports that How-To Advice accounts for approximately 8.5% of conversations for
ChatGPT usage, ranking 4th among 23 fine-grained categories. How-To Advice comes right behind Specific
Info (18.3%), Edit or Critique Provided Text (10.6%), and Tutoring or Teaching (10.2%). At current ChatGPT
scale, this corresponds to tens to hundreds of millions of how-to interactions daily.

We also apply the same query-type classifier to two publicly available corpora, WildChat-4.8M (Zhao et al., 2024)
and LMSYS-Chat-1M (Zheng et al., 2024), but observe systematic skews in query-type distributions relative
to ChatGPT, consistent with these corpora being collected from unrestricted public LLM endpoints rather
than from a deployed product. See https://huggingface.co/datasets/how2everything/WildChat-4.8M and
https://huggingface.co/datasets/how2everything/lmsys-chat-1m for the labeled datasets. Accordingly,
we anchor our discussion of real-world LLM usage to the ChatGPT distribution and use the open datasets
primarily to contextualize results under alternative user behavior regimes.

See Table 4 for a summary of the query type distribution across ChatGPT, LMSYS, and WildChat.

Table 4 Query type distribution across chat sources (percent of conversations). OpenAI numbers are taken from
Chatterji et al. (2025); LMSYS and WildChat are computed by applying the same classifier rubric used in the OpenAI
report to LMSYS-Chat-1M (Zheng et al., 2024) and WildChat-4.8M (Zhao et al., 2024). We visually emphasize the
OpenAI (commercial) column.

Query type OpenAI LMSYS WildChat

Specific Info 18.3% 13.5% 8.7%

Edit or Critique Provided Text 10.6% 6.5% 13.2%

Tutoring or Teaching 10.2% 7.1% 7.0%

How To Advice 8.5% 5.5% 3.4%

Personal Writing or Communication 8.0% 7.4% 4.0%

Health, Fitness, Beauty or Self Care 5.7% 1.4% 1.1%

Translation 4.5% 1.4% 6.4%

Computer Programming 4.2% 13.2% 8.8%

Create an Image 4.2% 0.6% 6.1%

Other / Unknown 4.1% 3.1% 5.2%

Creative Ideation 3.9% 3.1% 4.7%

Argument or Summary Generation 3.6% 7.5% 5.5%

Mathematical Calculation 3.0% 3.0% 1.5%

Purchasable Products 2.1% 0.8% 0.7%

Greetings and Chitchat 2.0% 5.8% 8.1%

Relationships and Personal Reflection 1.9% 1.5% 0.8%

Write Fiction 1.4% 7.1% 6.0%

Generate or Retrieve Other Media 1.1% 0.2% 0.2%

Cooking and Recipes 0.9% 0.6% 0.5%

Analyze an Image 0.6% 0.2% 0.1%

Data Analysis 0.4% 1.9% 5.2%

Games and Role Play 0.4% 3.8% 1.7%

Asking About the Model 0.4% 4.7% 1.1%

18

https://huggingface.co/datasets/how2everything/WildChat-4.8M
https://huggingface.co/datasets/how2everything/lmsys-chat-1m

B Details on data pipeline
This section provides details related to the data. Prompts used for the data pipeline are provided in
subsection H.1.

B.1 Top frequent URL domains
See Table 5 for the top 10 most frequent URL domains within each topic in our final pool of 351K procedure
instances. Counts are the number of procedure instances in the given topic whose source URL belongs to the
domain.

Table 5 Top 10 most frequent URL domains per topic in our final pool of 351K procedure instances.

Rank Domain Count
Art & Design

1 instructables.com 237

2 creativelive.com 212

3 steves-digicams.com 126

4 shutterbug.com 97

5 dummies.com 95

6 wikihow.com 81

7 picturecorrect.com 73

8 digital-photography-school.com 68

9 snapshot.canon-asia.com 67

10 photography.tutsplus.com 67

Crime & Law
1 wikihow.com 414

2 legalbeagle.com 241

3 policeone.com 159

4 policemag.com 88

5 patternlanguagenetwork.org 79

6 info.legalzoom.com 77

7 avvo.com 76

8 americanbar.org 70

9 nolo.com 60

10 insidecounsel.com 54

Education & Jobs
1 betterlesson.com 201

2 wikihow.com 128

3 englishlessonplanner.com 124

4 classroom.synonym.com 95

5 work.chron.com 95

6 auburn.edu 85

7 education.com 82

8 slideplayer.com 64

9 prezi.com 52

10 brighthubeducation.com 50

Electronics & Hardware
1 instructables.com 1348

2 wikihow.com 121

3 lifehacker.com 114

4 ecmweb.com 76

5 dummies.com 73

6 hackaday.com 68

Continued on next page.

19

Rank Domain Count
7 crutchfield.com 53

8 hackaday.io 49

9 itstillworks.com 49

10 lifewire.com 49

Fashion & Beauty
1 wikihow.com 753

2 leaf.tv 437

3 reference.com 347

4 oureverydaylife.com 260

5 instructables.com 229

6 naturallycurly.com 186

7 allure.com 181

8 popsugar.com 171

9 becomegorgeous.com 137

10 cosmopolitan.com 136

Food &Dining
1 recipe-finder.com 1065

2 food.com 817

3 ifood.tv 569

4 dlife.com 385

5 foodandwine.com 313

6 instructables.com 244

7 vegweb.com 242

8 seriouseats.com 241

9 relish.com 234

10 washoku.guide 210

Health
1 wikihow.com 370

2 healthyliving.azcentral.com 87

3 infobarrel.com 85

4 slideplayer.com 82

5 livestrong.com 63

6 dummies.com 47

7 lifehacker.com 44

8 futurelearn.com 44

9 leaf.tv 44

10 hubpages.com 42

Home&Hobbies
1 instructables.com 1083

2 homeguides.sfgate.com 787

3 wikihow.com 359

4 hunker.com 291

5 reference.com 216

6 homesteady.com 199

7 ehow.com 183

8 doityourself.com 173

9 thespruce.com 169

10 lifehacker.com 160

Industrial
1 ecmweb.com 280

2 forconstructionpros.com 195

3 ptonline.com 138

Continued on next page.

20

Rank Domain Count
4 thefabricator.com 116

5 machinerylubrication.com 116

6 screenweb.com 110

7 beefmagazine.com 106

8 instructables.com 104

9 weldingtipsandtricks.com 103

10 wikihow.com 100

Religion
1 lds.org 610

2 uua.org 146

3 wikihow.com 131

4 spellsofmagic.com 117

5 classroom.synonym.com 105

6 bible.org 102

7 orthodoxsundayschool.org 79

8 childrensministry.com 78

9 ssnet.org 77

10 teachonereachone.org 59

Science, Math & Technology
1 education.com 361

2 slideplayer.com 297

3 instructables.com 284

4 getrevising.co.uk 208

5 nrich.maths.org 192

6 openwetware.org 167

7 betterlesson.com 159

8 sciencebuddies.org 121

9 ck12.org 118

10 prezi.com 92

Sports & Fitness
1 healthyliving.azcentral.com 360

2 wikihow.com 329

3 t-nation.com 287

4 bodybuilding.com 249

5 active.com 231

6 woman.thenest.com 207

7 livehealthy.chron.com 178

8 runnersworld.com 176

9 howcast.com 163

10 mensfitness.com 162

Transportation
1 hotrod.com 260

2 itstillruns.com 219

3 wikihow.com 204

4 instructables.com 184

5 superchevy.com 140

6 ixigo.com 122

7 reference.com 104

8 popularmechanics.com 100

9 auto.howstuffworks.com 96

10 aopa.org 87

Travel & Tourism
Continued on next page.

21

Source format #docs After extraction (%) After heuristics (%) After LLM filter (%)
Tutorial & how-to guide 140,000 86.87% 70.46% 24.46%
Personal blog 140,000 34.48% 25.41% 14.26%
Knowledge articles 140,000 35.47% 23.72% 16.54%
Non-fiction writing 140,000 33.65% 24.80% 13.65%
Q&A forum 140,000 49.02% 31.75% 17.67%
Academic writing 122,439 29.20% 23.21% 16.29%

Table 6 Aggregate yield rates by WebOrganizer document format, measured through the procedure-extraction stage,
heuristics filtering, and the LLM filter stage (before postprocessing and final validation). All yields are reported as a
percentage of the original input source documents for each format.

Rank Domain Count
1 traveltips.usatoday.com 256

2 ixigo.com 168

3 wikihow.com 146

4 tripsavvy.com 75

5 lifehacker.com 61

6 getawaytips.azcentral.com 58

7 frommers.com 55

8 budgettravel.com 45

9 cruisemates.com 30

10 instructables.com 28

B.2 Extracting procedures from documents of other formats
See Table 6 for yield rates for WebOrganizer document formats beyond “Tutorial & How-to Guide”, measured
through the procedure-extraction stage, heuristics filtering, and the LLM filter stage (before postprocessing
and final validation). Throughout, yield at a stage is computed relative to the original input source documents
for that format (i.e., #documents retained after the stage divided by #input documents). Overall, these
results show that valid, extractable procedures are not unique to tutorial-style pages, but “Tutorial & How-to
Guide” consistently achieves the highest yields at each stage, so we focus on it as the primary source format
for efficient large-scale mining.

B.3 Implementation details on the heuristics filter
We apply two simple filters in sequence: (1) Step-count filter. We require the extracted procedure to have
between min_steps and max_steps steps (defaults: 5–15; configurable via command-line flags). (2) N-gram
repetition filter. We normalize each step (lowercasing and removing punctuation) and compute the repetition
rate of 2-, 3-, and 4-grams pooled across all steps, where repetition rate is the fraction of n-grams that are
repeated beyond their first occurrence. We reject procedures with high repetition, using thresholds of ≥ 0.40
for bigrams, ≥ 0.35 for trigrams, or ≥ 0.30 for fourgrams. This filter primarily removes degenerate extractions
that repeat near-identical phrases or steps.

B.4 Rationale behind LLM filter criteria
At the LLM filter stage in How2Mine, we remove procedures that fall within the following categories
(matching the prompt in §H.1):

• Named-entity focused. These instances hinge on entity-specific conventions (a particular person, organi-
zation, website, software product, or brand). Their correctness is often time- and access-dependent, and
cannot be judged reliably without the entity context.

22

• Pure math. Pure calculation or formula-solving tasks are not procedures in our intended sense: success
is determined by a correct numeric/algebraic result and is better evaluated by mathematical or verifiable
oracles rather than critical-failure detection in instructions.

• UI interaction. UI-driven tasks require interacting with specific interfaces (websites, apps, terminals) and
implicit state (what is currently visible, which buttons exist, what menus are named). In our execution-free
setting, these tasks are difficult to verify and are brittle to UI changes over time.

• Open-ended creative generation. Creative goals have many qualitatively different valid endpoints, and
the boundary between valid and invalid is dominated by taste and preference rather than by missing
prerequisites or contradictions.

• Non-sequential process. Some examples are practically listicles, where most steps are order-independent
without clear linear dependencies. Such instances are ill-posed for step-by-step validity evaluation.

• Unreasonable procedure. Finally, we remove instances where the steps are internally inconsistent or cannot
plausibly achieve the stated goal (e.g., contradictions, logically impossible actions, or missing essential
actions). Some are also simply nonsensical (e.g., “How to fail an exam”). This serves as a quality-control
stage: since How2Score uses the mined reference procedure as an anchor, unreasonable references would
directly add noise to both evaluation and training.

B.5 Example procedures for all 14 topics
In Table 7, we show one full example (goal, resources, reference steps) for each of the 14 topics.

Table 7 One full example (goal, resources, reference steps) for each of the 14 topics used in How2Everything.

Topic Goal Resources Reference steps
Art &Design To produce a glass piece featuring a

reticello network pattern using the
process of forming, twisting, and
combining two color-cored glass
cups.

color-cored glass canes;
glass collar

1. Form a cup by rolling color-cored glass canes
around a glass collar.
2. Twist the cup to create a spiral pattern.
3. Remove the twisted cup from the collar and set
it aside.
4. Form a second cup by rolling color-cored glass
canes around a glass collar.
5. Twist the second cup in the opposite direction to
the first cup.
6. Blow the second cup inside the first cup to
create the reticello network pattern.

Crime & Law Sell your share of a common property
apartment with separate ownership
by following the required legal
procedure for notifying co-owners
and transferring ownership.

notary; notarial document;
letter with a list of
contents; receipt

1. Prepare a notification to all co-owners stating
the conditions of sale of your share.
2. Visit a notary to draw up a notarial document
including all sale conditions.
3. Distribute the notarial document to all
co-owners by letter with a list of contents, obtaining
a receipt from each.
4. Wait 30 days for co-owners to express their
desire to purchase your share.
5. Sell your share to a third party.

Education &
Jobs

To create an it-cleft sentence in
English that emphasizes a specific
part of a given simple sentence.

simple sentence; BE verb
(“was” or “is”); “It”; “who”;
“that”; “when”

1. Choose the simple sentence to transform.
2. Select the part of the sentence to emphasize
(subject, object, or time).
3. Start the new sentence with “It” and the
appropriate form of the BE verb (“was” or “is”).
4. Place the chosen part to emphasize immediately
after the BE verb.
5. Insert “who,” “that,” or “when” as appropriate to
introduce the rest of the sentence.
6. Add the remaining information from the original
sentence to complete the it-cleft sentence.

Continued on next page.

23

Topic Goal Resources Reference steps
Electronics
& Hardware

To maintain a pedestrian turnstile
gate to ensure its proper functioning
and extend its service life through a
regular, comprehensive maintenance
procedure.

soft cloth; vacuum cleaner;
lubricant; antirust oil;
stainless steel maintenance
oil; paint; non-corrosive
cleaning solution; soft
lint-free rag

1. Cut off the power supply to the turnstile gate.
2. Open the cover of the turnstile gate chassis.
3. Clean dust and debris from the surface and
interior using a soft cloth or vacuum cleaner.
4. Tighten any loose connecting screws on all
internal parts.
5. Apply lubricant to moving components after
inspecting the wear of vulnerable parts.
6. Adjust the balance spring after 30,000
operations.
7. Replace any aging or damaged wires in the
power circuit.
8. Polish the external chassis with a soft cloth and
apply antirust oil or stainless steel maintenance oil.
9. Repair exposed scratches on the chassis with
paint of the same color.
10. Clean the infrared acrylic mirror and beam
window with a non-corrosive cleaning solution and a
soft lint-free rag.

Food &
Dining

Prepare fricasé Boliviano, a spicy
pork stew with potatoes and white
corn, by cooking pork with spices,
thickening the stew, and serving with
cooked potatoes and white corn.

oil; large pot; pork pieces;
white onion; cumin; black
pepper; garlic; cayenne
pepper; green onion; water;
pan; potatoes; white corn;
bread crumbs; deep plate

1. Heat oil in a large pot.
2. Fry pork pieces in the oil until golden.
3. Add white onion, cumin, black pepper, garlic,
cayenne pepper, and green onion to the pot.
4. Pour water into the pot while stirring.
5. Simmer until the meat comes off the bones,
maintaining the broth level as needed (about 2
hours).
6. Cook potatoes in a separate pan until done.
7. Cook white corn in a separate pan until done.
8. Add bread crumbs to the stew to thicken it
shortly before serving.
9. Serve the stew in a deep plate and garnish with
the cooked potatoes and white corn.

Fashion &
Beauty

Create the structured base of an
Uzbeki Spy Hat (or Wizard Hat)
using interfacing and fabric.

interfacing; fabric; scissors;
needle; thread

1. Cut a right triangle from the interfacing by
folding one corner to meet the opposite side and
cutting along the fold.
2. Fold the triangle in half and stitch from the
point downwards to form a cone.
3. Trim the cone so it fits properly above your eyes.
4. Lay the cone on your fabric with the seam next
to one edge and cut around the bottom, leaving
about an inch of seam allowance.
5. Roll the interfacing cone over towards the
adjacent side of the fabric to cut the other half.
6. Stitch a cone of fabric.
7. Trim the tips and turn both cones inside out.
8. Fit the interfacing cone inside the fabric cone.
9. Stitch the cones together near the base of the
interfacing.

Health To prevent the formation of venous
ulcers in your legs by following a
daily care routine.

compression stockings;
lotion; antiseptic ointment

1. Wear compression stockings every day while you
are awake.
2. Exercise regularly to lose weight and lower blood
pressure.
3. Apply lotion to your legs every day.
4. Check your legs for hard or rough areas and
small cuts or abrasions while applying lotion.
5. Use antiseptic ointment on every small sore.

Home&
Hobbies

To create a knurled band on the face
of a prop driver using the plunge
knurling technique on a lathe.

lathe; knurl holder; tool
post holder; peg; cross slide

1. Reduce the stock to the final diameter required
for the driver.
2. Counter-bore to a depth of about 0.016 inches to
produce the band that will be knurled.
3. Mount the knurl holder in the tool post holder
with the center of the peg set to lathe center height.
4. Start the lathe and run the work at about 500
rpm.
5. Plunge the knurl into the face of the drive
washer to form the knurl.
6. Run the cross slide in and out by about 1/32
inch to help clear chips and form the V’s.
7. Take a light skimming cut over the outside
diameter of the driver to remove the metal burr.
8. Take a light skimming cut on the inside of the
band.

Continued on next page.

24

Topic Goal Resources Reference steps
Industrial Install a comprehensive

waterproofing system for below
grade spaces to prevent water ingress
and structural damage.

high performance
waterproofing;
waterproofing membrane;
comprehensive
waterproofing system;
installers; manufacturer;
geotechnical report

1. Specify high performance waterproofing suitable
for the assessed risk.
2. Ensure the waterproofing membrane bonds
adhesively to the structure to prevent lateral water
migration.
3. Specify a comprehensive waterproofing system
for both floors and walls.
4. Confirm that installers are experienced and
trained by the manufacturer, and arrange for
manufacturer support such as preinstall meetings
and site visits.
5. Have the manufacturer review the geotechnical
report to ensure membrane compatibility with site
contaminants.

Religion Analyze the influence of decanates
and their associated Areas of
Consciousness on the principal
theme of a natal chart.

natal chart; decanates;
Areas of Consciousness

1. Determine the decanates occupied by the Sun,
Moon, Ascendant, Ruling Planet, and ruler of the
5th house in the natal chart.
2. Identify which decanate (first, second, or third)
is most frequently occupied by the majority of these
key points.
3. Associate the most emphasized decanate with its
corresponding Area of Consciousness: Personal
(first), Relating (second), or Universal (third).
4. Highlight any key points not in the majority
decanate for special consideration regarding their
expression.
5. Integrate the decanate emphasis and associated
Areas of Consciousness with the principal theme of
the natal chart.

Science,
Math &
Technology

Compute the trajectory of a particle
through a velocity field using
numerical integration within a grid.

cell; velocity field; grid;
Euler’s method

1. Identify the cell containing the initial position of
the particle.
2. Determine the velocity at the current position
by interpolation.
3. Calculate the new position using Euler’s method.
4. Identify the cell containing the new position.
5. Repeat the previous three steps while the
particle remains inside the grid.

Sports &
Fitness

Complete a specific yoga sequence
designed to stretch and strengthen
the core muscles for equestrian
fitness.

yoga mat 1. Practice three-part breath (pranayama),
expanding the stomach, then ribs, then chest on
each inhale.
2. Move the spine in all directions—front, back,
sides, and twists—while linking breath to
movement.
3. Hold Goddess pose by standing with legs wide,
bending knees, keeping chest elevated and shoulders
over hips, tucking tailbone, and sinking into the
squat.
4. Hold Warrior 1 pose by facing forward,
stretching one leg back into a lunge, reaching both
arms upward, keeping shoulders wide, and
elongating the torso by drawing the belly button
toward the spine; alternate legs and hold each side
for 10 breaths.
5. Hold Downward Facing Dog by bending down
from standing, stretching legs back to high plank,
then pressing hands down and lifting hips up and
back to form an inverted “V”, keeping weight evenly
distributed between hands and feet.
6. Lie on your back in Savasana (Corpse pose) and
relax for several minutes.

TransportationCheck a car seat as baggage at the
airport to minimize the risk of
damage or loss by following a
specific procedure.

large corrugated cardboard
box; contact information;
airline check-in counter;
airline staff; luggage tag;
claim ticket; baggage area;
airline’s baggage desk;
photos

1. Pack the car seat securely in a large corrugated
cardboard box.
2. Label the box with your contact information.
3. Bring the packed car seat to the airline check-in
counter.
4. Check the car seat as baggage with the airline
staff and obtain a luggage tag or claim ticket.
5. Inspect the car seat for visible damage upon
arrival at your destination before leaving the
baggage area.
6. File a claim at the airline’s baggage desk
immediately if the car seat is lost or visibly
damaged, providing the luggage tag information
and photos.

Continued on next page.

25

Topic Goal Resources Reference steps
Travel &
Tourism

Verify the authenticity of a U.S.
e-passport and the identity of its
holder at a border control terminal
using the e-passport chip and
printed information.

passport terminal;
e-passport chip; printed
key; passport book; person
presenting the passport

1. Unlock the e-passport chip using the printed key
from the passport book.
2. Establish communication between the passport
terminal and the unlocked chip over a short
distance.
3. Transmit the encrypted data from the chip to
the passport terminal.
4. Verify the digital signature on the chip’s data to
confirm authenticity and detect tampering.
5. Compare the printed information, the digital
information from the chip, and the person
presenting the passport.

C Details on developing How2Score

C.1 Human annotation setup
In the final version of annotator training, we first define critical failures, then carefully walk annotators
through five examples of critical failures and six acceptable variances that should not be counted as critical.

Our annotation interface enforces attention checks: annotators must explicitly click through UI elements
to confirm that they have read and understood each example. Submissions remain closed until at least 90
seconds have elapsed. See screenshots of our annotation interface in Figures 7, 8, 9, 10, 11.

Figure 7 Annotation interface screenshot [1]. Annotators must acknowledge they have read and understood the
goal, then click through all model-generated steps to confirm they have thoroughly read them.

C.2 Distillation
To construct training data for distilling GPT 5 into a Qwen 3 8B judge, we collect 72,920 GPT 5 annotations
on model-generated procedures from a diverse set of generator models. Specifically, we include generations
from:

• gemini-2.5-flash

• gemini-2.5-pro (Google 2025)
• gpt-4.1 (OpenAI 2025)
• GPT 5 (OpenAI 2026)
• qwen2.5-7b-instruct (Qwen Team 2024)

26

Figure 8 Annotation interface screenshot [2]. After reading the example, annotators select whether they do
identify a critical failure.

Figure 9 Annotation interface screenshot [3]. If there is no critical failure, annotators can select that option from
the dropdown, and submit.

27

Figure 10 Annotation interface screenshot [4]. If annotators do identify a critical failure, they need to provide a
brief description, then click any relevant reference / generation steps.

Figure 11 Annotation interface screenshot [5]. Annotators can add multiple instances of critical failures.

28

• OLMo-2-0425-1B-Instruct

• OLMo-2-0425-1B-stage1-step760000-tokens1594B

• OLMo-2-0425-1B-stage1-step1907359-tokens4001B

• OLMo-2-1124-7B-Instruct

• OLMo-2-1124-7B-stage1-step467000-tokens1959B

• OLMo-2-1124-7B-stage1-step928646-tokens3896B

• OLMo-2-0325-32B-Instruct

• OLMo-2-0325-32B-stage1-step467000-tokens3918B

• OLMo-2-0325-32B-stage1-step721901-tokens6056B

To reduce label noise from stochastic judging, we run GPT 5 twice for each example and retain only examples
where the binary judgment (has_failure vs. no_failure) is consistent across both runs. We finetune Qwen 3
8B for 3 epochs with learning rate 5e−6 and batch size 64.

D Evaluation details

D.1 Inference setup details
At inference time, the generator model receives the goal g, the resource list R, and the required step count
n = ∣S⋆∣, and is asked to output a procedure Ŝ with exactly n steps.11

Figure 12 Requesting model to stick to the level detail in the few-shot examples in the inference prompt (“v2”)
significantly brings the generation length distribution closer to the reference distribution.

Inference-time control for length bias. Like many existing benchmarks that use LLM judges (Zheng et al.,
2023; Dubois et al., 2025), How2Bench shows length bias. In early experiments, we found that rewriting a
procedure to be more verbose (while attempting not to introduce new information) can increase scores, even
when the underlying procedural content is unchanged. To avoid unfairly rewarding verbosity, we standardize
inference across all models using the same 3-shot prompts. Full prompts in §H.2. The prompts used for base
and instruct endpoints are slightly different in wording. For instruction-tuned models, we append a more
instruction-like suffix to the prompt. The examples in the prompt illustrate the expected output format

11Conditioning generations on R and n is an evaluation control that reduces degrees of freedom and improves comparability
across model outputs. It is not intended to reflect typical real-world usage.

29

and intended level of detail. We enforce explicit length control by requiring each step to be a single, concise
sentence containing one main action, and asking the model to closely follow the concision level in the provided
examples. Figure 12 shows that this explicit length control brings generated lengths substantially closer to
the reference length distribution.

Decoding setup. For non-reasoning (“non-thinking”) model endpoints, we use greedy decoding. To prevent
overly long continuations (especially from base models), we use a stop sequence of \n\n for these endpoints. For
reasoning-enabled API models, we use stochastic decoding with temperature T = 0.6, and use the provider’s
default reasoning/thinking budget for each API.

D.2 Full intermediate checkpoint evaluation results on How2Bench

Table 8 Full checkpoint results on How2Bench, including pretraining trajectories. For OLMo, Pretrain corresponds
to the stage1 checkpoint series, Midtrain to the final base checkpoint, and Posttrain to the final instruct checkpoint.

Suite Size Stage Step How2Score Avg gen tokens
OLMo-2

OLMo-2-0425 1B Pretrain 20000 0.06 247.74
OLMo-2-0425 1B Pretrain 100000 0.56 109.12
OLMo-2-0425 1B Pretrain 190000 0.76 105.18
OLMo-2-0425 1B Pretrain 380000 0.80 86.24
OLMo-2-0425 1B Pretrain 760000 0.96 101.86
OLMo-2-0425 1B Pretrain 1140000 1.51 83.21
OLMo-2-0425 1B Pretrain 1530000 1.49 82.71
OLMo-2-0425 1B Pretrain 1907359 1.59 81.69
OLMo-2-0425 1B Midtrain – 6.39 82.63
OLMo-2-0425 1B Posttrain – 5.96 66.86

OLMo-2-1124 7B Pretrain 9000 0.09 132.99
OLMo-2-1124 7B Pretrain 46000 2.61 87.79
OLMo-2-1124 7B Pretrain 93000 4.74 77.82
OLMo-2-1124 7B Pretrain 187000 7.10 91.71
OLMo-2-1124 7B Pretrain 371000 7.66 82.53
OLMo-2-1124 7B Pretrain 557000 8.39 85.12
OLMo-2-1124 7B Pretrain 743000 8.84 81.32
OLMo-2-1124 7B Pretrain 928646 10.43 89.93
OLMo-2-1124 7B Midtrain – 22.29 90.20
OLMo-2-1124 7B Posttrain – 27.36 96.40

OLMo-2-0325 32B Pretrain 7000 1.79 108.28
OLMo-2-0325 32B Pretrain 36000 8.60 79.71
OLMo-2-0325 32B Pretrain 72000 12.29 83.69
OLMo-2-0325 32B Pretrain 145000 10.86 78.67
OLMo-2-0325 32B Pretrain 289000 12.53 79.84
OLMo-2-0325 32B Pretrain 433000 15.00 74.57
OLMo-2-0325 32B Pretrain 578000 15.63 75.68
OLMo-2-0325 32B Pretrain 721901 17.74 75.54
OLMo-2-0325 32B Midtrain – 35.50 94.94
OLMo-2-0325 32B Posttrain – 40.56 101.21

OLMo-3
OLMo-3-1025 7B Pretrain 14000 4.13 98.68
OLMo-3-1025 7B Pretrain 71000 12.42 111.83
OLMo-3-1025 7B Pretrain 141000 16.00 93.80
OLMo-3-1025 7B Pretrain 283000 17.82 96.76
OLMo-3-1025 7B Pretrain 566000 17.87 93.51

Continued on next page.

30

Suite Size Stage Step How2Score Avg gen tokens
OLMo-3-1025 7B Pretrain 848000 21.96 90.34
OLMo-3-1025 7B Pretrain 1130000 21.46 90.85
OLMo-3-1025 7B Pretrain 1413814 21.59 86.26
OLMo-3-1025 7B Midtrain – 24.91 96.67
OLMo-3-1025 7B Posttrain – 30.23 101.60

OLMo-3-1125 32B Pretrain 6000 6.21 108.16
OLMo-3-1125 32B Pretrain 29000 17.15 87.24
OLMo-3-1125 32B Pretrain 58000 21.96 86.44
OLMo-3-1125 32B Pretrain 116000 23.96 91.79
OLMo-3-1125 32B Pretrain 232000 25.53 89.01
OLMo-3-1125 32B Pretrain 347000 26.94 80.56
OLMo-3-1125 32B Pretrain 463000 30.86 93.29
OLMo-3-1125 32B Pretrain 579120 31.00 97.52
OLMo-3-1125 32B Midtrain – 38.31 95.19
OLMo-3-1125 32B Posttrain – 43.16 100.77

D.3 Formatting proxymetrics over intermediate checkpoints
To complement How2Everything scores with simple automated checks of procedural formatting, we
compute three proxy metrics on model generations across checkpoint trajectories and report them in Table 9.
Step-count mismatch is the fraction of examples where the generated procedure has a different number
of steps than the reference, i.e., ∣predicted_steps∣ ≠ ∣reference_steps∣. Duplicate steps is the fraction
of examples where predicted_steps contains any exact repeated step string (verbatim duplicates), i.e.,
∣set(predicted_steps)∣ ≠ ∣predicted_steps∣. Dup n-gram rate is computed within each example by
concatenating predicted_steps, whitespace-tokenizing, forming n-grams, and computing

∑g max(0, cg − 1)
total n-grams ,

where cg is the count of n-gram g; we then average over examples. In this table we report the unweighted
mean across n ∈ {1, 2, 3, 4}.

Table9 Formatting proxy metrics computed on model outputs across checkpoint trajectories (all values are percentages).

Suite Size Stage Step Task score Step-countmismatch Dup-step ex. Dup n-gram rate (1--4)
OLMo-3-1125

OLMo-3-1125 32B Pretrain 7000 4.33% 9.37% 2.14% 11.74%
OLMo-3-1125 32B Pretrain 33000 13.29% 2.41% 0.79% 9.90%
OLMo-3-1125 32B Pretrain 66000 17.10% 1.24% 1.27% 10.71%
OLMo-3-1125 32B Pretrain 131000 21.52% 2.20% 0.77% 9.90%
OLMo-3-1125 32B Pretrain 262000 22.33% 2.14% 0.57% 10.17%
OLMo-3-1125 32B Pretrain 394000 25.23% 1.41% 0.27% 9.74%
OLMo-3-1125 32B Pretrain 525000 29.14% 2.07% 0.30% 10.70%
OLMo-3-1125 32B Pretrain 656000 32.30% 0.60% 0.26% 10.43%
OLMo-3-1125 32B Midtrain – 35.23% 1.30% 0.16% 9.42%
OLMo-3.1 32B Posttrain – 42.47% 1.71% 0.00% 8.99%

OLMo-3-1025
OLMo-3-1025 7B Pretrain 14000 2.12% 22.47% 2.83% 13.42%
OLMo-3-1025 7B Pretrain 71000 8.15% 18.46% 1.66% 11.50%
OLMo-3-1025 7B Pretrain 141000 11.55% 6.73% 0.66% 10.19%

Continued on next page.
31

Suite Size Stage Step Task score Step-countmismatch Dup-step ex. Dup n-gram rate (1--4)
OLMo-3-1025 7B Pretrain 283000 13.44% 6.94% 1.97% 11.13%
OLMo-3-1025 7B Pretrain 566000 13.53% 7.01% 2.56% 11.77%
OLMo-3-1025 7B Pretrain 848000 17.91% 3.63% 1.66% 10.61%
OLMo-3-1025 7B Pretrain 1130000 17.44% 3.81% 1.50% 10.79%
OLMo-3-1025 7B Pretrain 1413814 17.19% 3.37% 1.47% 10.14%
OLMo-3-1025 7B Midtrain – 21.51% 1.97% 0.24% 9.72%
OLMo-3 7B Posttrain – 29.80% 0.03% 0.00% 9.06%

OLMo-2-0425
OLMo-2-0425 1B Pretrain 20000 0.01% 59.61% 35.44% 36.98%
OLMo-2-0425 1B Pretrain 100000 0.21% 19.66% 12.63% 21.41%
OLMo-2-0425 1B Pretrain 190000 0.50% 23.11% 8.16% 18.91%
OLMo-2-0425 1B Pretrain 380000 0.34% 11.96% 9.29% 20.29%
OLMo-2-0425 1B Pretrain 760000 0.57% 16.26% 7.49% 18.81%
OLMo-2-0425 1B Pretrain 1140000 0.56% 15.81% 5.11% 16.06%
OLMo-2-0425 1B Pretrain 1530000 0.75% 13.31% 5.81% 17.30%
OLMo-2-0425 1B Pretrain 1907359 1.02% 12.14% 5.59% 17.18%
OLMo-2-0425 1B Midtrain – 3.47% 10.43% 0.89% 10.62%
OLMo-2-0425 1B Posttrain – 4.34% 36.99% 0.01% 8.47%

OLMo-2-1124
OLMo-2-1124 7B Pretrain 9000 0.04% 37.67% 18.57% 26.40%
OLMo-2-1124 7B Pretrain 46000 1.76% 7.17% 5.64% 16.67%
OLMo-2-1124 7B Pretrain 93000 2.88% 4.77% 4.30% 16.42%
OLMo-2-1124 7B Pretrain 187000 4.30% 8.53% 4.83% 16.01%
OLMo-2-1124 7B Pretrain 371000 5.07% 6.90% 4.10% 16.36%
OLMo-2-1124 7B Pretrain 557000 5.97% 7.81% 4.91% 16.49%
OLMo-2-1124 7B Pretrain 743000 6.47% 10.10% 4.27% 15.69%
OLMo-2-1124 7B Pretrain 928646 6.57% 10.23% 3.81% 15.08%
OLMo-2-1124 7B Midtrain – 17.91% 5.71% 0.23% 8.12%
OLMo-2-1124 7B Posttrain – 27.62% 0.10% 0.00% 9.21%

OLMo-2-0325
OLMo-2-0325 32B Pretrain 7000 1.13% 11.41% 4.46% 17.77%
OLMo-2-0325 32B Pretrain 36000 6.02% 3.67% 4.73% 16.03%
OLMo-2-0325 32B Pretrain 72000 9.25% 5.31% 5.43% 16.98%
OLMo-2-0325 32B Pretrain 145000 8.85% 4.34% 4.44% 17.46%
OLMo-2-0325 32B Pretrain 289000 9.36% 5.57% 4.31% 15.92%
OLMo-2-0325 32B Pretrain 433000 12.46% 11.56% 4.00% 15.67%
OLMo-2-0325 32B Pretrain 578000 12.55% 3.63% 3.40% 14.93%
OLMo-2-0325 32B Pretrain 721901 15.00% 3.33% 3.86% 15.54%
OLMo-2-0325 32B Midtrain – 32.25% 2.73% 0.17% 8.26%
OLMo-2-0325 32B Posttrain – 40.14% 0.10% 0.01% 10.29%

D.4 Conditional perplexity vs. How2Score
We compute conditional perplexity (teacher-forced) on the reference steps only, conditioned on the goal and
resources prompt for each example, and compare checkpoint ordering under this metric to checkpoint ordering

32

under How2Score. Table 16 reports per-checkpoint How2Score scores and conditional reference-step
perplexities, along with the induced within-run ranks. For each OLMo trajectory, the table header reports
the Spearman rank correlation across the 9 checkpoints (8 stage-1 pretraining checkpoints plus the stage-2
midtrained checkpoint).

D.5 Instance-level correlates of How2Score no_failure
This section analyzes how the How2Score label (no_failure vs. has_failure) varies with three simple,
instance-level properties: the reference step count ∣S⋆∣ (which also determines the requested number of
generated steps in our inference setup), the resource count ∣R∣ (the number of resources extracted from the
reference procedure and provided as part of the task specification), and a generation-to-reference length
ratio that captures residual verbosity relative to the reference. We focus on 7 models: two open 7–8B models,
two open 32B models, and three closed frontier models. Because topics differ in typical reference step counts
and resource-list sizes, we fit a logistic regression with topic fixed effects that predicts the per-example
How2Score binary label from these covariates:

logit(p(no_failure)) = log
p(no_failure)

1 − p(no_failure)
= β0 + βsteps ⋅ ∣S⋆∣ + βres ⋅ ∣R∣ + βratio ⋅ ρ + ∑

t∈T \{t0}
γt I[topic = t], (1)

where ∣S⋆∣ is the reference step count, ∣R∣ is the reference resource count, and ρ is the generation/reference
token ratio in percentage points: ρ = 100 ⋅ ∣gen∣/∣ref∣, computed by tokenizing each step string with the same
token counting logic used in our evaluation scripts (tiktoken o200k_base). Here T is the set of 14 topics and
t0 is the baseline topic (in our runs, the baseline is chosen as the first topic in lexicographic order, which is
Art & Design). We report odds ratios OR = exp(β), which are multiplicative changes in odds per +1 unit of
the corresponding covariate.

Table 10 Instance-level analysis with topic-controlled logistic regression, including residual verbosity. For each model,
we fit Equation 1 on the How2Bench examples using that model’s generations and the How2Score-derived binary
label (no_failure vs. has_failure), excluding records with missing fields or undefined token ratios. We report odds
ratios (OR) with Wald 95% confidence intervals computed from the inverse Hessian. For numerical stability, we include
a small L2 penalty (λ = 10

−6) on non-intercept coefficients; effects are unchanged at this scale. ORsteps < 1 indicates
that no_failure becomes less likely as reference procedures require more steps within a topic. Orange text indicates
non-significant effects at p ≥ 0.05 (equivalently, the 95% CI includes 1.0). The Overall row fits the same regression on
pooled generations across the shown models.

Model How2Bench score OR per +1 step
(95%CI)

OR per +1 resource
(95%CI)

OR per +1pp gen/ref
(95%CI)

OLMo-3-7B-Instruct 30.23 0.756 [0.730, 0.783] 1.009 [0.990, 1.028] 1.012 [1.010, 1.014]

Qwen3-8B-Instruct 35.34 0.737 [0.713, 0.762] 1.020 [1.002, 1.038] 1.015 [1.014, 1.017]

OLMo-3.1-32B-Instruct 43.16 0.751 [0.729, 0.775] 1.043 [1.025, 1.060] 1.013 [1.012, 1.015]

Qwen3-32B-Instruct 46.04 0.765 [0.742, 0.788] 1.018 [1.001, 1.035] 1.014 [1.012, 1.016]

Gemini-2.5-Pro 56.11 0.795 [0.773, 0.817] 1.062 [1.045, 1.080] 1.018 [1.016, 1.020]

Claude-Opus-4.5 64.26 0.813 [0.791, 0.836] 1.060 [1.043, 1.078] 1.017 [1.015, 1.019]

GPT 5 67.99 0.846 [0.824, 0.869] 1.022 [1.006, 1.039] 1.014 [1.012, 1.016]

Overall 49.02 0.803 [0.795, 0.812] 1.032 [1.026, 1.039] 1.015 [1.014, 1.015]

Referencestepcount (numberof requiredsteps) is thedominantpredictor. Across all models, βsteps < 0 with
ORsteps ∈ [0.74, 0.85], meaning that each additional required step is associated with a substantial decrease
in the odds of no_failure, even after controlling for topic, resources, and residual verbosity (Table 10).
This pattern is expected: procedures with more required steps create more opportunities for critical failures
(omissions, wrong parameters, contradictions) to occur. Importantly, in our inference setup we request exactly
n generated steps with n = ∣S⋆∣, so reference step count is also the required output length; thus, this effect
mixes both (i) intrinsic task complexity and (ii) the increased surface area for errors introduced by requiring
longer outputs.

33

Figure 13 Topic fixed effects from Equation 1 across models, shown as log-odds offsets γt relative to the baseline
topic (Art & Design). Red indicates higher odds of no_failure than the baseline topic after controlling for step count,
resource count, and the gen/ref length ratio; blue indicates lower odds.

Residual verbosity ispositivelyassociatedwith no_failure. The gen/ref token ratio ρ has a consistent positive
association with no_failure across models: ORratio ≈ 1.01–1.02 per +1 percentage point (Table 10). Because
this coefficient is per +1pp increase in 100 ⋅ ∣gen∣/∣ref∣, it compounds quickly: a +10pp increase corresponds
to roughly (ORratio)10, i.e., on the order of a 10–20% increase in the odds of no_failure, holding topic, step
count, and resources fixed. This provides quantitative evidence of residual verbosity bias in judge-based
evaluation even under our explicit step-count and concision constraints; we therefore report average generated
tokens alongside How2Bench results.

Ceiling effects attenuate apparent effect sizes for frontiermodels. We also observe that the step-count effect
is less extreme for the strongest models (e.g., GPT 5, Claude Opus 4.5): when overall no_failure rates are
high, there is less residual variance left for simple predictors to explain, so estimated effect sizes can appear
smaller even if the underlying trend is shared.

Topic effects are large and broadly consistent across models. Figure 13 visualizes the topic offsets γt
after controlling for ∣S⋆∣ and ∣R∣. We find systematic differences in conditional no_failure odds across
topics: Education & Jobs and Food & Dining tend to have substantially higher odds of no_failure than the
baseline topic, while Electronics & Hardware and Industrial tend to have lower odds. Although the absolute
magnitudes vary with model strength, the direction of these topic effects is broadly stable across models,
indicating that topic-level variation is not reducible to step and resource counts alone.

E Training details

E.1 Training data deduplication
To reduce train–evaluation leakage, we perform embedding-based deduplication between the training set
used for RL/SFT and the evaluation pool used to construct How2Bench. Concretely, we embed each
example as a single text string consisting of the goal followed by the numbered reference steps (one step
per line). We compute L2-normalized sentence embeddings (so dot product equals cosine similarity) using a
SentenceTransformer embedding model (Qwen/Qwen3-Embedding-0.6B Qwen Team (2025b)), and for each
candidate evaluation example we find its nearest neighbor in the training set by cosine similarity. We then

34

filter out candidate evaluation examples whose maximum train similarity exceeds a fixed threshold (τ = 0.65),
and sample a topic-balanced clean evaluation set from the remaining examples.

Operationally, we first compute a nearest-neighbor similarity report (one record per evaluation example,
including the nearest training example and its cosine similarity), then apply the threshold filter, re-attach
full example records, and sample up to a fixed number of examples per topic (with a fixed random seed) to
produce the final cleaned split. The resulting evaluation set is thus deduplicated with respect to the training
set under this embedding similarity criterion.

E.2 Details on training setup
We construct the training set by sampling 100K examples created by our pipeline (§3), balanced across
14 topics. We use embedding-based similarity filtering to ensure low overlap between the training set and
How2Bench (see §E.1).

SFT setup. For SFT, we finetune both base and instruction-tuned checkpoints of Qwen 3 4B, Qwen 3 8B, and
OLMo 3 7B for one epoch (learning rate 5e−6; batch size 64). We format SFT examples using the prompt
template from §5.1.

RL setup with length control. For RL, we train Qwen 3 4B Instruct, Qwen 3 8B Instruct, and OLMo
3 7B Think.12 We train with Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for 1000
optimizer steps with learning rate 5e−7. Each rollout batch samples 4 prompts, with a GRPO group size of 8
completions per prompt. We sample rollouts using the same prompt template as in §5.1. Rewards sum three
components: (i) a binary How2Score score computed by How2Judge, (ii) a step-format verifier, and (iii) a
reference-calibrated length reward to prevent length gaming. See §E.4 for details.

E.3 SFT results
We observe that SFT on our data yields at best small gains when starting from non-posttrained (base)
checkpoints, but does not improve and can decrease performance when applied on top of already instruction-
tuned checkpoints. A likely reason is objective mismatch: SFT imitates one reference-style realization per goal,
while How2Score rewards any valid procedure as long as it avoids critical failures, so additional imitation
on How2Train does not reliably reduce critical failures. See Table 11.

Table 11 Performance before and after SFT.

Model Stage Before After ∆ Gen tokens (before) Gen tokens (after)
Qwen3-4B Base 32.00 33.11 +1.11 99.59 90.77
Qwen3-4B Instruct 29.70 28.47 −1.23 89.63 84.83

Qwen3-8B Base 35.54 35.20 −0.34 112.21 88.16
Qwen3-8B Instruct 35.34 32.45 −2.89 99.18 83.69

OLMo-3-7B Base 24.91 26.13 +1.22 96.67 88.10
OLMo-3-7B Instruct 30.23 22.07 −8.16 101.60 74.26

E.4 Auxiliary format and length rewards used during RL
In addition to the binary How2Score reward, we include two lightweight, verifiable reward components: (i)
a step-format verifier and (ii) a reference-calibrated length reward. Both are computed from the model’s final
answer text and are added to the scalar reward used by GRPO.

Step-format verifier. We check that the final answer contains an explicitly numbered list of steps with
consecutive numbering starting at 1 (e.g., 1,2,3,. . .), and when an expected step count is provided, that the
number of steps matches it. This verifier returns 1 if the formatting constraints are satisfied and 0 otherwise.

12Thinking mode refers to the presence of explicit intermediate reasoning. Qwen models integrate instruction-following and
reasoning in a single checkpoint, whereas OLMo provides separate Instruct and Think checkpoints.

35

Reference-calibrated length reward. Let ∣gen∣ and ∣ref∣ denote the token lengths of the generated final answer
and the reference, respectively (measured with a fixed tokenizer). We compute the ratio r = ∣gen∣/∣ref∣ and
assign full credit within a tolerance band τ around 1.0 (we use τ = 0.2). Outside the band, the reward decays
exponentially:

Rlen(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, ∣r − 1∣ ≤ τ,

exp(−α ⋅ ∣r−1∣−τ
1−τ) , otherwise,

with α = 5. Intuitively, this keeps generations close to the reference length while allowing moderate variation.
Table 12 contrasts RL runs with vs. without this length reward.

Table 12 Length control is necessary to prevent verbosity hacking during RL. We report How2Bench score and
average generated tokens for RL-trained models with and without the length-based reward term. The average reference
length is 97.44 tokens. For OLMo-3-7B-Think, we only report the main run (with length reward); the no-length-reward
ablation was not run.

Model RL reward How2Bench score Avg gen tokens Avg gen/ref
Qwen3-4B-Inst + length reward (main) 43.52 97.96 1.01
Qwen3-4B-Inst no length reward (prelim) 54.41 130.14 1.34

Qwen3-8B-Inst + length reward (main) 48.62 96.99 1.00
Qwen3-8B-Inst no length reward (prelim) 67.00 149.42 1.53

OLMo-3-7B-Think + length reward (main) 37.89 91.80 0.94
OLMo-3-7B-Think no length reward (not run) – – –

E.5 Judge robustness for RL gains
Refer to Table 13 for detailed results on the judge robustness check.

Table 13 RL gains persist under external judges. Scores are shown before and after RL (GRPO; step 1000); ∆ reports
absolute gain with percent gain in parentheses.

How2Judge GPT 5 judge Gemini-2.5-Pro judge

Before After ∆ (%) Before After ∆ (%) Before After ∆ (%)

Qwen3-4B-Inst 30.29 43.52 +13.23 (43.69%) 27.13 36.28 +9.15 (33.72%) 15.66 24.83 +9.17 (58.58%)
Qwen3-8B-Inst 38.52 48.62 +10.10 (26.23%) 32.63 41.39 +8.76 (26.84%) 20.10 28.13 +8.03 (39.94%)
Olmo-3-7B-Think 27.30 37.89 +10.58 (38.77%) 20.63 31.71 +11.09 (53.74%) 13.53 20.30 +6.77 (50.05%)

E.6 Details on out-of-domain benchmarks
See Table 14 for details on each benchmark and the main capability it targets. We ran all our evaluations
with the OLMES framework (Gu et al., 2025).

E.7 Topic-restricted RL transfer across topics
See Figure 14 for the PCA projection of topic embeddings for the 14 topics, computed from the goal texts.
We use this visualization to select contrasting topic subsets for the topic-restricted RL experiment. Results
are shown in Table 15.

F Analyses and diagnostics

36

Table 14 Out-of-domain benchmarks used in Table 2 and the primary capability each targets.

Benchmark Primary capability tested

MMLU-Pro Wang et al. (2024) Broad professional-grade knowledge and multi-domain reasoning.

GPQA Rein et al. (2024) Graduate-level science Q&A requiring deep domain understanding and reasoning;
designed to be difficult to answer via retrieval alone.

ZebraLogic Lin et al. (2025) Deductive logical reasoning on structured logic puzzles.

AlpacaEval Dubois et al. (2025) Instruction-following and response quality via preference-style evaluation of
helpfulness.

HumanEval+ Liu et al. (2023) Program synthesis: writing correct code from docstrings with stronger correctness
checking.

LiveCodeBench Jain et al. (2024) Real-world coding ability under contamination-aware, time-based evaluation.

MBPP+ Liu et al. (2023) Python programming: solving short tasks with improved test coverage.

GSM8K Cobbe et al. (2021) Grade-school math word-problem solving with multi-step arithmetic reasoning.

Minerva Lewkowycz et al. (2022) Quantitative reasoning on math/science problems (often requiring longer-form
derivations).

OMEGA Sun et al. (2025b) Mathematical reasoning that emphasizes exploratory, compositional, and trans-
formative generalization.

AIME24 Competition mathematics (AIME exam problems; Olympiad-style reasoning).

AIME25 Competition mathematics (AIME exam problems; Olympiad-style reasoning).

Table 15 RL training on topic-specific data (Qwen3-8B with thinking). We report overall task score and per-topic
breakdown after RL (step 1000), along with deltas relative to the base model.

Model Overall Art & Design Crime & Law Education & Jobs Electronics & Hardware Fashion & Beauty Food & Dining Health Home & Hobbies Industrial Religion Science, Math & Tech Sports & Fitness Transportation Travel & Tourism

Qwen3-8B (with thinking) 38.52 33.73 38.08 59.64 26.91 39.16 42.17 43.09 31.26 25.80 48.09 45.09 27.51 27.11 51.60
All topics (RL, step 1000) 48.62 42.57 53.72 70.00 37.75 49.30 52.10 54.40 39.48 36.55 53.91 52.01 39.80 38.55 60.40
Delta 10.10 8.84 15.65 10.36 10.84 10.14 9.94 11.31 8.22 10.75 5.82 6.92 12.29 11.45 8.80
Science-only (RL, step 1000) 47.93 44.98 53.01 71.20 36.95 50.70 49.70 52.20 36.47 35.01 55.20 53.51 38.28 35.81 57.83
Delta 9.41 11.24 14.94 11.56 10.04 11.54 7.53 9.11 5.21 9.21 7.11 8.42 10.77 8.71 6.23
Dining-only (RL, step 1000) 44.07 36.47 46.80 67.60 31.33 44.29 50.30 50.20 39.08 29.66 52.01 46.99 34.74 33.13 54.31
Delta 5.55 2.74 8.72 7.96 4.42 5.13 8.13 7.11 7.82 3.86 3.92 1.90 7.23 6.02 2.71

37

Figure14 PCA projection of topic embeddings for the 14 topics, computed from the goal texts. We use this visualization
to select contrasting topic subsets for the topic-restricted RL experiment in Table 15.

38

Table 16 Per-checkpoint How2Score and conditional reference-step perplexity (lower is better), along with the
induced ranks within each training run. Checkpoints are identified using the same Suite/Size/Stage/Step convention
as Table 8.

Suite Size Stage Step How2Score PPL Rank (How2Score) Rank (ppl)
OLMo-2-0425 (1B) (Spearman rank ρ = 0.917)

OLMo-2-0425 1B Pretrain 20000 0.06 11.60 9 9
OLMo-2-0425 1B Pretrain 100000 0.56 9.63 8 8
OLMo-2-0425 1B Pretrain 190000 0.76 9.25 7 7
OLMo-2-0425 1B Pretrain 380000 0.80 9.11 6 6
OLMo-2-0425 1B Pretrain 760000 0.96 8.95 5 4
OLMo-2-0425 1B Pretrain 1140000 1.51 9.07 3 5
OLMo-2-0425 1B Pretrain 1530000 1.49 8.28 4 2
OLMo-2-0425 1B Pretrain 1907359 1.59 8.30 2 3
OLMo-2-0425 1B Midtrain – 6.39 7.72 1 1

OLMo-2-1124 (7B) (Spearman rank ρ = 0.667)

OLMo-2-1124 7B Pretrain 9000 0.09 9.833 9 9
OLMo-2-1124 7B Pretrain 46000 2.61 7.734 8 7
OLMo-2-1124 7B Pretrain 93000 4.74 7.319 7 6
OLMo-2-1124 7B Pretrain 187000 7.10 7.035 6 4
OLMo-2-1124 7B Pretrain 371000 7.66 7.294 5 5
OLMo-2-1124 7B Pretrain 557000 8.39 6.581 4 2
OLMo-2-1124 7B Pretrain 743000 8.84 8.303 3 8
OLMo-2-1124 7B Pretrain 928646 10.43 6.523 2 1
OLMo-2-1124 7B Midtrain – 22.29 6.707 1 3

OLMo-2-0325 (32B) (Spearman rank ρ = 0.233)

OLMo-2-0325 32B Pretrain 7000 1.79 7.99 9 9
OLMo-2-0325 32B Pretrain 36000 8.60 6.39 8 4
OLMo-2-0325 32B Pretrain 72000 12.29 6.45 6 5
OLMo-2-0325 32B Pretrain 145000 10.86 6.02 7 1
OLMo-2-0325 32B Pretrain 289000 12.53 6.63 5 6
OLMo-2-0325 32B Pretrain 433000 15.00 6.73 4 7
OLMo-2-0325 32B Pretrain 578000 15.63 6.78 3 8
OLMo-2-0325 32B Pretrain 721901 17.74 6.12 2 2
OLMo-2-0325 32B Midtrain – 35.50 6.18 1 3

OLMo-3-1025 (7B) (Spearman rank ρ = 0.850)

OLMo-3-1025 7B Pretrain 14000 4.13 8.31 9 9
OLMo-3-1025 7B Pretrain 71000 12.42 7.76 8 8
OLMo-3-1025 7B Pretrain 141000 16.00 7.27 7 7
OLMo-3-1025 7B Pretrain 283000 17.82 6.20 6 6
OLMo-3-1025 7B Pretrain 566000 17.87 5.96 5 2
OLMo-3-1025 7B Pretrain 848000 21.96 5.93 2 1
OLMo-3-1025 7B Pretrain 1130000 21.46 6.01 4 4
OLMo-3-1025 7B Pretrain 1413814 21.59 6.11 3 5
OLMo-3-1025 7B Midtrain – 24.91 6.00 1 3

OLMo-3-1125 (32B) (Spearman rank ρ = 0.483)

OLMo-3-1125 32B Pretrain 6000 6.21 7.856 9 9
OLMo-3-1125 32B Pretrain 29000 17.15 6.683 8 7
OLMo-3-1125 32B Pretrain 58000 21.96 6.087 7 6
OLMo-3-1125 32B Pretrain 116000 23.96 5.857 6 5
OLMo-3-1125 32B Pretrain 232000 25.53 5.597 5 2
OLMo-3-1125 32B Pretrain 347000 26.94 5.487 4 1

Continued on next page.

39

Suite Size Stage Step How2Score PPL Rank (How2Score) Rank (ppl)
OLMo-3-1125 32B Pretrain 463000 30.86 5.655 3 4
OLMo-3-1125 32B Pretrain 579120 31.00 6.915 2 8
OLMo-3-1125 32B Midtrain – 38.31 5.619 1 3

G Qualitative examples of common failure patterns

G.1 Qualitative analysis details
Below, we provide examples of model outputs with and without critical failures, scored by How2Judge.

Crime & Law: subtle critical omissions. Table 17 illustrates a subtle but critical omission: Gemini 2.5 Pro proposes a plausible
notary-mediated transfer, but skips the legally required waiting period that gives co-owners time to exercise purchase rights
(reference step 4). In contrast, Claude 4.5 Opus and GPT 5 both preserve the essential structure of notice → proof of delivery →
waiting period → transfer, even while varying phrasing and step ordering.

Science, Math & Technology: refusals and missing operational detail. Table 18 shows two common failure patterns on technical
procedures. First, GPT 5 refuses to provide step-by-step experimental instructions and instead gives only high-level guidance;
under our metric, this is a critical failure because it is not executable relative to the reference protocol. Second, Gemini 2.5
Pro provides a step sequence but leaves the thermocycling program underspecified, which the judge flags as missing a critical
operational condition for reliable execution.

Art & Design: example of success. Table 19 provides an example where all three frontier models produce coherent, actionable step-
by-step procedures. The outputs include small helpful additions (e.g., protecting adjacent pages) without omitting requirements,
illustrating that failures are not universal and often concentrate in recognizable patterns such as refusals or subtle critical
omissions.

Table 17 Qualitative example (Crime & Law): selling a share of a common-property apartment. We report the topic,
goal, reference steps, each model’s generated steps, and the resulting critical-failure annotations (§4). Models shown
are Claude 4.5 Opus (claude-opus-4.5), GPT 5 (GPT 5), and Gemini 2.5 Pro (gemini-2.5-pro).

Field Content
Topic Crime & Law

Goal Sell your share of a common property apartment with separate ownership by following the required
legal procedure for notifying co-owners and transferring ownership.

Reference
Steps 1. Prepare a notification to all co-owners stating the conditions of sale of your share.

2. Visit a notary to draw up a notarial document including all sale conditions.
3. Distribute the notarial document to all co-owners by letter with a list of contents, obtaining a
receipt from each.
4. Wait 30 days for co-owners to express their desire to purchase your share.
5. Sell your share to a third party.

Claude 4.5 Opus (no_failure)

Generated steps 1. Visit the notary to draft a formal notification letter stating your intent to sell, including the price
and terms of the sale.
2. Send the letter with a list of contents to each co-owner via registered mail to officially inform
them of their right of first refusal.
3. Obtain and retain the receipt as proof that all co-owners received proper legal notice within the
required timeframe.
4. After the statutory waiting period expires without co-owner acceptance, have the notary prepare
the notarial document for the sale to the outside buyer.
5. Sign the notarial document before the notary to legally transfer your share of ownership to the
new buyer.

Critical failures None.

GPT 5 (no_failure)

Continued on next page.

40

Field Content
Generated steps 1. Engage a notary to manage the sale of your apartment share and outline the required co-owner

notification procedure.
2. Have the notary draft a notarial document specifying the share, price, and terms of the intended
sale.
3. Send each co-owner a letter with a list of contents enclosing the notarial document and offering
them the right of first refusal by a stated deadline.
4. Retain the receipt proving delivery of the notice while the statutory response period runs.
5. After refusals or deadline expiry, sign the notarial transfer deed with the notary to transfer
ownership to the buyer.

Critical failures None.

Gemini 2.5 Pro (has_failure)

Generated steps 1. Engage a notary to draft a formal notification of the intended sale for all co-owners.
2. Send the notification via a letter with a list of contents and keep the postal receipt as proof.
3. Instruct the notary to prepare the final sale agreement as a notarial document.
4. Execute the transfer by signing the notarial document in the presence of the notary.
5. Receive the registered notarial document and the final transaction receipt from the notary.

Critical failures F1. Missing the required 30-day waiting period for co-owners to express their desire to purchase
before proceeding to sell (reference step 4).
F2. Proceeds to execute and register the transfer without ensuring the waiting period has elapsed or
that a third-party sale is permissible under the co-owner response procedure (reference steps 4–5).

Table18 Qualitative example (Science, Math & Technology): whole-plasmid PCR for repairing nicked plasmid products.
We report the topic, goal, reference steps, each model’s generated steps, and the resulting critical-failure annotations
(§4). Models shown are Claude 4.5 Opus (claude-opus-4.5), GPT 5 (GPT 5), and Gemini 2.5 Pro (gemini-2.5-pro).

Field Content
Topic Science, Math & Technology

Goal Generate and repair nicked plasmid products using whole plasmid PCR with PFU Ultra DNA
polymerase and PFU ligase, and verify and quantify the resulting PCR product.

Reference
Steps 1. Combine H2O, 10X PFU Ultra PCR buffer, 2mM dNTP mix, plasmid template, sense primer,

antisense primer, PFU Ultra DNA polymerase, and PFU ligase in a PCR tube on ice in the specified
order.
2. Run the thermocycling program: 95◦C for 1 minute; then 95◦C for 30 seconds; then 55◦C for 60
seconds; then 72◦C for 2 minutes per 1 kb of PCR product. Repeat the previous three steps for a
total of 12–20 cycles; then 72◦C for 20 minutes; then 55◦C for 60 minutes; then hold at 12◦C.
3. Verify the PCR product using gel electrophoresis.
4. Quantify the PCR product using Quantifluor® DNA quantification.

Claude 4.5 Opus (no_failure)

Generated steps 1. Combine H2O, 10X PFU Ultra PCR buffer, 2mM dNTP mix, plasmid template, sense primer,
antisense primer, PFU Ultra DNA polymerase, and PFU ligase in a PCR tube on ice.
2. Place the PCR tube in the thermocycler and run the whole plasmid amplification program with
appropriate cycling conditions.
3. Analyze an aliquot of the PCR product by gel electrophoresis to verify successful amplification
and correct fragment size.
4. Quantify the remaining PCR product using Quantifluor® DNA quantification to determine the
final yield.

Critical failures None.

GPT 5 (has_failure)

Generated steps 1. Sorry, I can’t help with step-by-step experimental instructions for molecular biology procedures.
2. At a high level, whole-plasmid PCR uses a high-fidelity polymerase with primers designed to copy
the entire circular template, generating products that may contain strand nicks.
3. A ligase formulated for post-PCR repair can seal those nicks to yield an intact molecule, while
agarose gel electrophoresis is used to assess product size and purity.
4. DNA concentration is then determined with a fluorometric assay; consult the enzyme manufacturers’
protocols and your lab’s biosafety guidelines for precise conditions.

Continued on next page.

41

Field Content
Critical failures F1. Refuses to provide actionable step-by-step instructions, making the procedure unusable for

achieving the goal (missing operational detail across reference steps 1–4).
F2. Omits the concrete thermocycling program parameters required to run the PCR (reference step
2).
F3. Omits explicit reaction setup instructions (reference step 1).

Gemini 2.5 Pro (has_failure)

Generated steps 1. In a PCR tube on ice, combine H2O, 10X PFU Ultra PCR buffer, 2mM dNTP mix, plasmid
template, sense and antisense primers, PFU Ultra DNA polymerase, and PFU ligase.
2. Place the reaction in a thermocycler and run a program optimized for whole plasmid amplification
and nick repair.
3. Verify the size of the resulting PCR product using gel electrophoresis.
4. Measure the DNA concentration of the final product using Quantifluor® DNA quantification.

Critical failures F1. Thermocycling program is underspecified/vague (“optimized for whole plasmid amplification and
nick repair”) instead of providing the concrete temperatures, times, and cycle counts required for
reliable execution (reference step 2).

Table 19 Qualitative example (Art & Design): creating stamped images in a journaling Bible using acrylic stamps.
We report the topic, goal, reference steps, each model’s generated steps, and the resulting critical-failure annotations
(§4). Models shown are Claude 4.5 Opus (claude-opus-4.5), GPT 5 (GPT 5), and Gemini 2.5 Pro (gemini-2.5-pro).

Field Content
Topic Art & Design

Goal Create stamped images in a journaling Bible using acrylic stamps.

Reference
Steps 1. Peel the acrylic stamp off the plastic sheet.

2. Stick the flat side of the stamp onto a clear acrylic stamping block.
3. Ink the stamp on your stamp pad to ensure good ink coverage.
4. Condition a new stamp by stamping a few times on scrap paper before reinking.
5. Layer a Bible mat and a thin piece of cushy packaging under your Bible page to create a flat
stamping surface.
6. Position the stamp where you want it on the page.
7. Stamp firmly on the paper without moving the stamp, then lift off cleanly.
8. Clean the stamp with a damp paper towel after use.

Claude 4.5 Opus (no_failure)

Generated steps 1. Slide the Bible mat beneath the page you plan to stamp to protect the underlying pages.
2. Place cushy packaging under the mat for a softer, more even stamping surface.
3. Insert the plastic sheet between the working page and the facing page to prevent ink bleed-through.
4. Peel the acrylic stamp from its backing and press it firmly onto the clear acrylic stamping block.
5. Tap the mounted stamp evenly onto the stamp pad until the design is fully inked.
6. Test the inked stamp on scrap paper to check image clarity and ink coverage.
7. Position the stamp over the desired spot in the Bible and press down with steady, even pressure.
8. Clean the stamp immediately with the damp paper towel to keep it ready for future use.

Critical failures None.

GPT 5 (no_failure)

Generated steps 1. Slip the Bible mat beneath the journaling page to protect the rest of the Bible.
2. Place the cushy packaging under the page on top of the mat to create a soft stamping surface.
3. Lay the plastic sheet over adjacent pages to shield them from stray ink.
4. Mount the acrylic stamp onto the clear acrylic stamping block.
5. Tap the mounted stamp evenly onto the stamp pad to load ink.
6. Make a test impression on the scrap paper to confirm coverage and positioning.
7. Stamp the design onto the Bible page with steady, even pressure.
8. Wipe the stamp clean with the damp paper towel.

Critical failures None.

Gemini 2.5 Pro (no_failure)

Continued on next page.

42

Field Content
Generated steps 1. Place the Bible mat behind the page you intend to stamp.

2. Slide a piece of cushy packaging under the mat for an even impression.
3. Peel the acrylic stamp from its plastic sheet.
4. Press the stamp firmly onto the clear acrylic stamping block.
5. Gently tap the stamp onto the stamp pad until it is evenly coated with ink.
6. Test the impression by stamping firmly onto a piece of scrap paper.
7. Press the inked stamp straight down onto the prepared Bible page with even pressure.
8. Clean the ink off the stamp using a damp paper towel before returning it to the plastic sheet.

Critical failures None.

H Prompt templates
This section includes the exact prompt templates used for inference, judging, and the web-data pipeline stages.

H.1 Prompts for the data pipeline
Figures 15, 16, 17, 18, and 19 provide the prompt templates for each stage of the web-mining data pipeline.

Prompt for Pipeline Stage: Procedure Extraction

You will be looking at a document from a web corpora. Your goal is to extract a well-defined sequential
process containing a list of at least three executable steps. A valid process should fulfill all of the
following requirements:

1. Sequential: the steps should follow a sequential order, where later steps depend on the completion of
previous steps.
2. Imperative and atomic: express each step as a single action. Add adjectives or adverbs only when they
supply essential precision (e.g., "coarsely grind beans" vs. simply "grind beans").
3. Concrete: each step should specify what to do, not why.

In order to satisfy these requirements, the steps you extract may differ from how they are originally
presented in the document. If there exists such a valid process, you should also extract the goal of this
process, which should:

1. Clearly state the outcome the process is meant to achieve.
2. Contain any essential context or constraints needed to understand or bound that outcome.

Output your response in JSON format following this convention:

{{
"has_valid_process": <boolean>, // true or false
"goal": <string>, // can be an empty string if there is no valid process
"steps": <string[]> // can be an empty list if there is no valid process

}}

If it is impossible to extract a valid process from the given document, simply set "has_valid_process" to
false, and leave "goal" and "steps" empty.

<start of document>
{document}
<end of document>

Figure 15 Prompt for the procedure-extraction stage in the web-mining pipeline.

Prompt for Pipeline Stage: LLM Filter

Inputs

Below is a goal and a list of steps to achieve it. Read them carefully.

43

Goal:
{goal}

Steps:
{steps}

Possible Categories

Classify the goal and steps using the categories below, or indicate that no category fits if none are
applicable.

1. **Named-entity Focused**
- The goal and/or steps explicitly revolve around a named entity such as a specific person, organization,

website, software, or branded product.
- Examples:
- "Make a pivot table in Microsoft Excel"
- "Recreate the hairstyle of Emma Roberts in her recent film"
- "Prepare a presentation for the UN sustainability summit"

2. **Pure Math**
- The entire task is purely a mathematical calculation or formula-solving exercise.
- Examples:
- "Find the square root of 144"
- "Solve for x in 2x + 5 = 15"
- "Compute the interest on a $1,000 loan at 5 percent for 3 years"

3. **UI Interaction**
- The goal and/or steps involve interactions with specific UI elements in websites, software, or systems.
- Examples:
- "Navigate to LinkedIn.com"
- "Click Next and log in"
- "Run ‘pip install requests‘ in the terminal"

4. **Open-ended Creative Generation**
- The goal and/or steps involve subjective, artistic, or imaginative creation where the output can vary

widely.
- Examples:
- "Write a poem about autumn"
- "Compose a short story about a robot learning to cook"
- "Create a color palette that feels like early spring"

5. **Non-sequential Process**
- A non-sequential process is one where most steps do not need to follow a fixed order. Each step is

independent or only loosely connected, so they can be completed in any sequence without changing the overall
outcome. With no strict dependencies, progress can happen flexibly---whether by working on steps in parallel,
skipping ahead, or circling back as needed.
- Examples:
- 1. Try different forms of exercise 2. Consult a nutritionist 3. Experiment with meal plans 4. Track

sleep 5. Practice stress-reduction techniques
- 1. Sketch possible product concepts 2. Research competitors 3. Estimate rough costs 4. Discuss with

potential customers 5. Jot down names/branding ideas
- 1. Donate clothes you no longer wear 2. Sell unused gadgets online 3. Organize kitchen cabinets 4. Sort

through old papers and files 5. Rearrange furniture for better space flow

6. **Unreasonable Procedure**
- The given steps cannot plausibly achieve the stated goal because some steps are logically impossible,

irrelevant, contradictory, or omit critical actions.

Task

Determine if the provided goal and steps **fully match any of the categories above**.
- Set "judgment" to false if no category fully applies. If at least one category fully applies, set it to true
.

44

- If "judgment" is true, provide a concise "reason" that explicitly mentions the relevant categories.
Otherwise, leave "reason" as an empty string.

Output Format

Return your output in the following JSON format:
{{

"judgment": <boolean>,
"reason": <string>

}}

Figure 16 Prompt for the LLM-based filtering stage in the web-mining pipeline.

Prompt for Pipeline Stage: Postprocess Goal/Steps Rewrite

Inputs

Below is a goal and a list of steps to achieve the goal.

Goal:
{goal}

Steps:
{steps}

Task

Revise the goal and steps so that they strictly fulfill all of the following conditions:

1. No resource-gathering steps:
- Remove any beginning steps that involve collecting resources, such as "get X" or "gather Y." Assume that

all required resources are already available.

2. Deterministic path:
- Ensure the goal and steps define one clear, unambiguous sequence of actions.
- Remove any optional or conditional phrasing (e.g., "do X with A or B," "if desired," or "if X, do Y") by

selecting and committing to a single branch, then update the goal and steps to reflect that choice.

3. Only include actions to perform:
- Each step should describe something to do, not something to avoid.
- Rephrase any negative or prohibitive steps into positive actions, or remove them.

4. Keep only actions and details necessary to achieve the goal:
- Remove any steps or information that do not directly contribute to accomplishing the goal. Eliminate

optional, decorative, or repetitive elements that have no effect on the final outcome.

5. One major action per step:
- Each step must involve a single, coherent major action or task.
- If a step contains multiple distinct actions (e.g., "mix, let stand, and drain"), split it into separate

steps so that each represents a single clear operation.

6. No excessive micro-steps:
- Avoid over-fragmentation where many consecutive steps repeat the same structure or action with only minor
variations.
- Combine such micro-actions into a single, higher-level step that naturally groups related operations into
one meaningful stage of the process.

7. Goal--steps alignment:
- Rewrite the goal so that it precisely reflects the scope, intent, and level of detail of the steps,

ensuring that the steps represent the only valid and sufficient way to achieve it.
- The goal should describe what is being accomplished, not how it’s done. Avoid procedural or action-level

details.

45

- Adjust general or broad goals to be specific enough that the listed steps are the only natural and
complete way to fulfill them.

Make no textual or formatting changes beyond what these conditions require. If no edits are necessary, leave
the goal and steps unchanged.

Output Format

Return your response in the following JSON format.

{{
"rewritten_goal": <string>,
"rewritten_steps": <string[]>

}}

Figure 17 Prompt for rewriting extracted goals and steps to be deterministic and well-aligned.

Prompt for Pipeline Stage: Postprocess Resource Extraction

Below is a goal and a corresponding list of steps to achieve that goal.

Goal:
{goal}

Steps:
{steps}

Your task is to extract and return a deduplicated list of every distinct resource---tool, ingredient, piece of
equipment, location, entity, etc.---explicitly mentioned in the steps only. Think of these as the key **
anchors of the process**: the essential external things that define the steps.

Guidelines:
1. List each resource only once.
2. Include only primary, external resources. Skip anything produced along the way (intermediate creations).
3. Exclude any components that are intrinsic to the subject being acted on---in other words, don’t list parts
of the thing you’re modifying, analyzing, or creating; include only external resources brought in to complete
the steps.

4. Ignore verbs, non-identifying adjectives, measurements, and generic or vague terms like "parts," "item," "
object," "surface," or pronouns.

Please return your response in the following JSON format:

{{
"resources": <string[]>

}}

Figure 18 Prompt for extracting an explicit resource list from the reference steps.

Prompt for Pipeline Stage: Final Filter

Inputs

Below is a goal and a list of steps to achieve the goal using the given resources.

Goal:
{goal}

Resources (could be empty):
{resources}

Steps:

46

{steps}

Task

Answer the following questions:

- **correctness**: Do the steps correctly achieve the stated goal?
- **sequential**: Do the steps form a clear, linear sequence (no branching or alternative paths)?
- **no_specific_entity**: Are the goal and steps free of references to specific entities (e.g., particular
people, products, websites, named resources, etc.) that require external context to be understood?
- **goal_steps_alignment**: Do the goal, steps, and resources together define a mostly deterministic plan -
such that, given the goal and the provided resources (which may be an empty list), the steps represent an
unambiguous and largely the only way to achieve the goal (allowing for minor variations in execution)?

Output Format

Return your response in the following JSON format. If your answer to any question is "no", provide a one-
sentence reason. Otherwise, leave the reason empty.

{{
"correctness": {{

"answer": "yes" or "no",
"reason": "..."

}},
"sequential": {{

"answer": "yes" or "no",
"reason": "..."

}},
"no_specific_entity": {{

"answer": "yes" or "no",
"reason": "..."

}},
"goal_steps_alignment": {{

"answer": "yes" or "no",
"reason": "..."

}}
}}

Figure 19 Prompt for the final sanity-check filtering stage in the web-mining pipeline.

H.2 Prompts for inference
Figures 20 and 21 provide the inference prompts used for base vs. post-trained checkpoints.

Prompt for Base-Model Procedure Generation

Goal:
Prevent a door from slamming shut by cushioning the latch with a rubber band.

Resources:
[rubber band, door]

Exactly 3 steps to achieve the goal using the given resources:
1. Stretch the rubber band around one door handle so that it crosses over the latch mechanism.
2. Twist the band once and loop it over the opposite handle, keeping it taut.
3. Center the band so it lies flat across the latch plate.

Goal:
Build a tabletop Zen sand garden to encourage daily mindfulness.

Resources:
[shallow tray, fine sand, small rocks, smooth shell, miniature rake, decorative figurine, essential oil, brush
]

47

Exactly 8 steps to achieve the goal using the given resources:
1. Place the shallow tray on a stable, level surface.
2. Pour fine sand into the tray until it forms an even layer about one inch deep.
3. Tap the tray edges lightly to settle and level the sand.
4. Arrange small rocks asymmetrically to create natural focal points.
5. Position the smooth shell and decorative figurine for added visual interest.
6. Use the miniature rake to draw flowing patterns around the objects.
7. Add one or two drops of essential oil onto a corner of the sand for subtle fragrance.
8. Gently brush stray grains from the tray edges to keep the display tidy.

Goal:
Calibrate and pair a Bluetooth stylus with a tablet for reliable digital note-taking, then save the
configuration.

Resources:
[Bluetooth stylus, charging cable, tablet, tablet Bluetooth settings, stylus settings panel, note-taking app,
microfiber cloth, internet connection]

Exactly 11 steps to achieve the goal using the given resources:
1. Connect the stylus to the charging cable and charge it for at least 30 minutes.
2. Power on the tablet and enable Bluetooth in the settings menu.
3. Disconnect the stylus from the charger and activate pairing mode.
4. In the tablet’s Bluetooth list, select the stylus name to initiate pairing.
5. Confirm any on-screen pairing prompt to finalize the connection.
6. Open the stylus settings panel found under "Paired Devices."
7. Launch the calibration tool and tap the on-screen targets to align tip accuracy.
8. Adjust pressure sensitivity to personal preference.
9. Open the note-taking app and create a test page.
10. Write and draw to verify smooth input and proper pressure response.
11. Back up or sync the stylus settings within the app or cloud account to preserve them for future use.

Goal:
{goal}

Resources:
{resources}

Exactly {n} steps to achieve the goal using the given resources:

Figure 20 Prompt for generating procedures during inference on base (no post-training) model checkpoints.

Prompt for Post-trained Procedure Generation

You will be given a goal and a list of resources. Your task is to output a list of steps that complete the
goal using the given resources. See below for some examples:

Goal:
Prevent a door from slamming shut by cushioning the latch with a rubber band.

Resources:
[rubber band, door]

Exactly 3 steps to achieve the goal using the given resources:
1. Stretch the rubber band around one door handle so that it crosses over the latch mechanism.
2. Twist the band once and loop it over the opposite handle, keeping it taut.
3. Center the band so it lies flat across the latch plate.

Goal:
Build a tabletop Zen sand garden to encourage daily mindfulness.

Resources:

48

[shallow tray, fine sand, small rocks, smooth shell, miniature rake, decorative figurine, essential oil, brush
]

Exactly 8 steps to achieve the goal using the given resources:
1. Place the shallow tray on a stable, level surface.
2. Pour fine sand into the tray until it forms an even layer about one inch deep.
3. Tap the tray edges lightly to settle and level the sand.
4. Arrange small rocks asymmetrically to create natural focal points.
5. Position the smooth shell and decorative figurine for added visual interest.
6. Use the miniature rake to draw flowing patterns around the objects.
7. Add one or two drops of essential oil onto a corner of the sand for subtle fragrance.
8. Gently brush stray grains from the tray edges to keep the display tidy.

Goal:
Calibrate and pair a Bluetooth stylus with a tablet for reliable digital note-taking, then save the
configuration.

Resources:
[Bluetooth stylus, charging cable, tablet, tablet Bluetooth settings, stylus settings panel, note-taking app,
microfiber cloth, internet connection]

Exactly 11 steps to achieve the goal using the given resources:
1. Connect the stylus to the charging cable and charge it for at least 30 minutes.
2. Power on the tablet and enable Bluetooth in the settings menu.
3. Disconnect the stylus from the charger and activate pairing mode.
4. In the tablet’s Bluetooth list, select the stylus name to initiate pairing.
5. Confirm any on-screen pairing prompt to finalize the connection.
6. Open the stylus settings panel found under "Paired Devices."
7. Launch the calibration tool and tap the on-screen targets to align tip accuracy.
8. Adjust pressure sensitivity to personal preference.
9. Open the note-taking app and create a test page.
10. Write and draw to verify smooth input and proper pressure response.
11. Back up or sync the stylus settings within the app or cloud account to preserve them for future use.

Your turn. For the following goal and resources, return exactly {n} steps. Each step should be a single,
concise sentence containing one main action. Closely follow the style shown in the examples above.

Only return the steps, do not say anything else.

Goal:
{goal}

Resources:
{resources}

{n} steps to achieve the goal using the given resources:

Figure 21 Prompt for generating procedures during inference on post-trained model checkpoints.

H.3 Prompts for the LLM judge for How2Score
Figure 22 provides the full prompt used for the How2Score LLM judge.

Prompt for the LLM Judge (How2Score)

You are given a goal and two lists of steps, L1 and L2. L1 is one correct procedure that is guaranteed to
achieve the goal. L2 is a candidate procedure whose correctness needs to be determined. Your task is to
determine whether L2 has any **critical failures**, using the goal and L1 as the reference.

Important Guidelines

49

L1 as Reference
L1 reliably achieves the goal as written, but it may not be the only valid way to do so. Use it as a reliable
reference, not the exclusive solution.

Definition of Critical Failure
A **critical failure** is an issue that fundamentally prevents the goal from being achieved or makes L2
unusable as a set of followable instructions.
Critical failures can take several forms:

Contradictions
- **Contradiction to the goal:** An L2 step directly contradicts a condition specified in the goal.
- **Contradiction to L1 steps:** An L2 step directly contradicts or significantly diverges from an L1 step,
preventing the goal from being achieved.

Logical or Structural Issues
- **Internal inconsistency:** An L2 step is inconsistent with another step within L2.
- **Incoherence:** L2 has very low readability or logical flow and is hard to follow. This doesn’t require
reading L1 to determine.
- **Severe vagueness:** As a whole, L2 lacks so much essential detail from L1 that it becomes basically
unusable.

Missing or Extraneous Actions
- **Missing critical action:** An essential L1 step required to achieve the goal is completely omitted in L2,
with no equivalent or implied action present.
- **Unnecessary, confusing, or counterproductive extra action:** An L2 step introduces an action not present
in L1 that is unnecessary or counterproductive.
- **Redundant repetition:** An L2 step repeats one or more previous steps in L2 where no such repetition
exists in L1.

These categories are not exhaustive. In practice, a single critical failure may span multiple categories.

Acceptable Variations
When assessing L2, focus on whether any issue is severe enough to prevent the goal from being achieved or to
make L2 incoherent or unusable as a set of instructions.
If not, the variation is acceptable.

Acceptable variations include:
- Minor differences in tone, phrasing, or level of detail.
- Differences in emphasis or ordering that do not affect the outcome.
- Additional steps that are neutral or practical.
- Reasonable implicit equivalence, where an omitted action is implied by another step.

Ignore stylistic or verbosity differences unless the omissions make L2 lack essential details from L1 to the
point that it becomes unusable. In that case, treat it as a critical failure (severe vagueness).

External Knowledge
Base all decisions only on the provided **Goal** and **L1**.
Minimize reliance on outside knowledge as much as possible.

Examples

Below are examples of what qualifies as a critical failure, as well as examples of what does not. To keep
things concise, the L1 and L2 cases are shown in summarized form. Please read through them carefully to
understand how to make the distinction. Keep in mind that these examples are not an exhaustive list of all
possible failures for each L2.

Examples of critical failures

Note: The following examples are not listing all failures present in each L2; it’s only for demonstration
purposes.

Goal: Prepare Indian-style red lentil dhal for 8 portions using an oven and skillet.
Summary of L1: Soak lentils 8 hours, rinse, steam at 100C with rice, spices, and aromatics, then finish with
lime juice, seasoning, and coriander garnish.
Summary of L2: Soak lentils only 30 minutes, then fry onions, garlic, chili, cumin, and salt in ghee, add
lentils with water, and simmer until soft.

50

Example critical failure: L2 soaks lentils for only 30 minutes, whereas L1 soaks for 8 hours. This is a
critical difference in time.
Example critical failure: L2 omits the oven entirely, using only stovetop simmering, which deviates from L1’s
oven-based preparation method and contradicts the goal.

Goal: To construct a traditional wooden Jacob’s Ladder toy using wood, ribbon, and small nails.
Summary of L1: Mark and cut the wood into equal pieces, sand coarse then fine, cut ribbon to equal lengths,
stack the wood in Jacob’s Ladder pattern, and nail ribbons to the pieces.
Summary of L2: Cut the wood into 5 equal pieces, sand smooth, then arrange them from largest to smallest,
nailing and wrapping ribbon around each piece in sequence.
Example critical failure: L2 contradicts itself; if the 5 pieces are of equal size, there is no largest or
smallest piece.

Goal: To treat head lice by applying a tea tree oil and apple cider vinegar solution to the hair.
Summary of L1: Mix tea tree oil with apple cider vinegar, wash hair, apply solution, cover 15 minutes, rinse,
then comb with a fine-tooth comb.
Summary of L2: Wash hair with shampoo, apply diluted tea tree oil--vinegar spray under a cap for 1 hour, comb,
and repeat treatment over 2 weeks, wash hair with shampoo.

Example critical failure: L2 step 7 repeats the shampooing step almost verbatim, a redundancy not present in
L1.

Goal: Prepare an alkyl chloride from a primary or secondary alcohol using thionyl chloride to avoid acid and
rearrangements.
Summary of L1: Place alcohol in a flask, add thionyl chloride, reflux, cool, then separate and dry the alkyl
chloride with a drying agent.
Summary of L2: Add alcohol and thionyl chloride to a flask, then add the drying agent, attach condenser,
reflux, cool, and filter off the drying agent.
Example critical failure: L2 adds the drying agent to the flask before heating the flask, while L1 uses the
drying agent at the very end.

Goal: Housebreak your Bichon Frise so that it reliably uses the designated outdoor bathroom location.
Summary of L1: Take your Bichon Frise to the outdoor bathroom spot, praise it after use, crate when
unsupervised, and repeat until accident free.
Summary of L2: Put the dog in the crate, take the dog out of the crate, take the dog to the bathroom, put the
dog back into the crate.
Example critical failure: L2 omits praising the dog after outdoor bathroom use, removing the positive
reinforcement step that is critical in L1 for reliable housebreaking.

Goal: To establish a clear, concise, and objective view of the accident based on evidence and actions.
L1:
1. Establish specific snapshots of the accident based on evidence.
2. Consider these actions in light of what they establish individually, then in relation and combination with
other actions.
3. Order or sequence the entire series of actions using specific sequencing evidence and common sense.
4. Audit actions where contradictions and questions arise to help decide what happened.
5. Define the events and overall conclusions about the accident based on the established actions and evidence.
L2:
1. Get the basic facts.
2. Do not make assumptions.
3. Separate the people from the problem.
4. Define the problem.
5. Do not judge.
Example critical failure: L2 as a whole omits many critical details present in L1, making it practically
unusable as a set of instructions.

Examples of acceptable variations that do not count as failures

Goal: Prepare Ambrosia Fruit Dip using cream cheese, yogurt, vanilla extract, grated lemon rind, and Equal
sweetener.
Summary of L1: Blend cream cheese and yogurt until smooth, add vanilla, lemon rind, and sweetener, mix well,
and chill in refrigerator.
Summary of L2: Combine cream cheese, yogurt, vanilla, and sweetener, beat until smooth, add lemon rind, chill,
then serve with fruit, enjoy, clean up, and store leftovers.

Acceptable variation: L2 last step (storing leftovers) is not in L1, but it is an extra practical step that is
reasonable and does not hurt the process.

Goal: Prepare a package for shipping so that its contents arrive in good condition.

51

Summary of L1: Choose a strong box, wrap and cushion items, fill empty space, close and tape box, attach label
, and remove old labels.
Summary of L2: Place items in box with cushioning, tape securely, attach and verify label, seal seams, mark
fragile if needed, and send to shipping service.
Acceptable variation: L2 omits removing old labels, but this is not critical since it is reasonable to assume
a new box without old labels.

Goal: Clean and protect car wheels safely and effectively using appropriate products and techniques for the
specific wheel finish.
Summary of L1: Identify wheel finish by contacting the manufacturer, choose a safe cleaner for this finish,
spray from bottom up, agitate with mitt/brush, and rinse thoroughly.
Summary of L2: Follow manufacturer’s cleaning recommendations for this wheel finish, wash with mitt and
cleaner, rinse, polish with metal polish, and apply protectant.
Acceptable variation: L1 explicitly requires identifying the wheel finish, while L2 implies this through
reading the manufacturer’s recommendations---a reasonable equivalent. This is not a critical omission.

Goal: Create distressed terra cotta pots as baby shower favors, each with an herb seed packet in a stamped
muslin bag.
Summary of L1: Paint pots with a base coat, dry, add a second coat, dry overnight, sand for a distressed look,
add pebbles, tie twine with a thank-you note, stamp "GROW" on muslin bags, insert herb seed packets, and
place the bags next to each pot.
Summary of L2: Paint pots in a contrasting color and dry, lightly sand, add pebbles and soil, tie twine with a
handwritten thank-you card, stamp and label muslin bags with the herb name, fill with seed packets, tie shut
, and place the bag in each pot.
Acceptable variation: L1 step 8 and L2 step 8 differ in what is written on each muslin bag, but this
difference is trivial and does not change the intended presentation or functionality.

Goal: To perform a basic sitting meditation focused on mental relaxation and body awareness.
Summary of L1: Sit cross-legged and adjust posture until relaxed; focus attention and let the body readjust;
maintain focus until fully relaxed; if distracted, return focus to the body.
Summary of L2: Sit on a chair or cushion with feet flat; close eyes and relax shoulders and jaw; notice body
sensations without change; when thoughts arise, return focus to the body.
Acceptable variation: L2 substitutes a seated position with feet flat on the floor for L1’s cross-legged
posture. Considering the goal, this variation should not be considered a critical failure, as both represent
valid meditation positions.

Goal: Capture sharp, blur-free photos of moving subjects using Shutter Priority Mode on your camera.
L1:
1. Set your camera to Shutter Priority Mode.
2. Select an appropriate shutter speed for the action you want to freeze (e.g., 250 for moderate movement,
1000 for fast action).
3. If shooting in low light, increase the ISO setting to a higher value (e.g., 800 or higher) to allow for
faster shutter speeds.
4. Use a lens with a wide aperture (low f-number) to let in more light.
5. Position yourself at an appropriate angle or level for the subject (e.g., get low to the ground for
children or sports).
6. Take the photo by pressing the shutter button.
L2:
1. Set the camera’s mode dial to Shutter Priority.
2. Set the ISO setting to a high value for adequate light sensitivity.
3. Select a wide aperture to capture as much light as possible.
4. Set the shutter speed to a fast value (at least 1/500 of a second) to freeze motion.
5. Use the camera’s viewfinder to frame and focus on your subject.
6. Press the shutter button to take the photo.
Acceptable variation: L2 simplifies the process a bit but retains all essential actions, so it is not a
critical failure. However, if it used vague terms like "appropriate value" instead of specifying "high" or "
fast," it would be a critical failure, as the instructions would no longer be useful.

Input data

Goal:
{goal}

L1:
{reference_steps}

L2:

52

{steps}

Output format

To ensure transparency, provide clear reasoning in the "reasoning" field. This part should explain why each
potential issue in L2 does or does not qualify as a critical failure. The reasoning must not simply restate
the failures---it should instead show your **thought process in determining correctness or failure severity
**.

Guidelines for marking critical failures:
- Identify **all** critical failures in the given L2, and return them as a list called "critical_failures".
- The "failure" field should provide a concise and clear explanation of what the failure is.
- Each failure must be linked to **one or two** most relevant steps from L1 and/or L2. Record these in the "
L1_steps" and "L2_steps" fields as lists of step numbers. Only link to more than two steps if there is a good
reason to do so.

- If no failures are found, return "critical_failures": [].

Return your response in the following JSON format:

{{
"reasoning": "<string>",
"critical_failures": [
{{
"failure": "<string>",
"L1_steps": [<int>],
"L2_steps": [<int>]

}},
...

]
}}

Figure 22 Prompt for the LLM judge used to detect critical failures in candidate procedures.

53

	Introduction
	Problem Setting and Related Work
	How2Mine: Extracting Realistic Step-by-Step Procedures from the Web
	Sampling Web Pages for Procedure Mining
	From Web Documents to Structured Procedures

	How2Score: Measuring Procedural Validity by Detecting Critical Failures
	Defining Critical Failures in an Open-World Setting
	Evaluation Protocol
	Validation via Human Annotations
	Distilling a Cost-Effective Judge

	How2Bench: Evaluating Performance on Step-by-Step Procedure Generation
	Inference Setup
	Evaluation Results and Analysis

	Improving Step-by-Step Procedure Generation with RL
	Training Setup
	Results and Analysis

	Robustness to Format and Memorization Confounds
	Confound 1: Implicit Task Format Compliance
	Confound 2: Memorization of Source Documents

	Motivational analysis of query type distribution
	Details on data pipeline
	Top frequent URL domains
	Extracting procedures from documents of other formats
	Implementation details on the heuristics filter
	Rationale behind LLM filter criteria
	Example procedures for all 14 topics

	Details on developing How2Score
	Human annotation setup
	Distillation

	Evaluation details
	Inference setup details
	Full intermediate checkpoint evaluation results on How2Bench
	Formatting proxy metrics over intermediate checkpoints
	Conditional perplexity vs. How2Score
	Instance-level correlates of How2Score no_failure

	Training details
	Training data deduplication
	Details on training setup
	SFT results
	Auxiliary format and length rewards used during RL
	Judge robustness for RL gains
	Details on out-of-domain benchmarks
	Topic-restricted RL transfer across topics

	Analyses and diagnostics
	Qualitative examples of common failure patterns
	Qualitative analysis details

	Prompt templates
	Prompts for the data pipeline
	Prompts for inference
	Prompts for the LLM judge for How2Score

