Menu
Viewing 21-40 of 227 papers
Clear all
    • NAACL 2019
      Yi Luan, Dave Wadden, Luheng He, Mari Ostendorf, Hannaneh Hajishirzi

      We introduce a general framework for several information extraction tasks that share span representations using dynamically constructed span graphs. The graphs are dynamically constructed by selecting the most confident entity spans and linking these nodes with confidence-weighted relation types and coreferences. The dynamic span graph allows coreference and relation type confidences to propagate through the graph to iteratively refine the span representations. This is unlike previous multitask frameworks for information extraction in which the only interaction between tasks is in the shared first-layer LSTM. Our framework significantly outperforms state-of-the-art on multiple information extraction tasks across multiple datasets reflecting different domains. We further observe that the span enumeration approach is good at detecting nested span entities, with significant F1 score improvement on the ACE dataset.

      Less More
    • NAACL 2019
      Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata, Hannaneh Hajishirzi

      Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of long-distance dependencies, and structural variety. We demonstrate how attention-based models for graph encoding can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporating these models into an encoder-decoder setup, we provide a new end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods.

      Less More
    • NAACL 2019
      Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, Niranjan Balasubramanian

      Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs.

      We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models.

      Less More
    • Benchmarking Hierarchical Script Knowledge
      NAACL 2019
      Yonatan Bisk, Jan Buys, Karl Pichotta, Yejin Choi
    • NAACL 2019
      Jesse Thomason, Daniel Gordan, Yonatan Bisk

      Language-and-vision navigation and question answering (QA) are exciting AI tasks situated at the intersection of natural language understanding, computer vision, and robotics. Researchers from all of these fields have begun creating datasets and model architectures for these domains. It is, however, not always clear if strong performance is due to advances in multimodal reasoning or if models are learning to exploit biases and artifacts of the data. We present single modality models and explore the linguistic, visual, and structural biases of these benchmarks. We find that single modality models often outperform published baselines that accompany multimodal task datasets, suggesting a need for change in community best practices moving forward. In light of this, we recommend presenting single modality baselines alongside new multimodal models to provide a fair comparison of information gained over dataset biases when considering multimodal input.

      Less More
    • NAACL 2019
      Phoebe Mulcaire, Jungo Kasai, Noah A. Smith

      We introduce a method to produce multilingual contextual word representations by training a single language model on text from multiple languages. Our method combines the advantages of contextual word representations with those of multilingual representation learning. We produce language models from dissimilar language pairs (English/Arabic and English/Chinese) and use them in dependency parsing, semantic role labeling, and named entity recognition, with comparisons to monolingual and non-contextual variants. Our results provide further support for polyglot learning, in which representations are shared across multiple languages.

      Less More
    • NAACL 2019
      Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew Peters, Noah A. Smith

      Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer LM, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on top of frozen contextual representations are competitive with state-of-the-art task-specific models in many cases, but fail on tasks requiring fine-grained linguistic knowledge (e.g., conjunct identification). To investigate the transferability of contextual word representations, we quantify differences in the transferability of individual layers within contextualizers, especially between RNNs and transformers. For instance, higher layers of RNNs are more task-specific, while transformer layers do not exhibit the same monotonic trend. In addition, to better understand what makes contextual word representations transferable, we compare language model pretraining with eleven supervised pretraining tasks. For any given task, pretraining on a closely related task yields better performance than language model pretraining (which is better on average) when the pretraining dataset is fixed. However, language model pretraining on more data gives the best results.

      Less More
    • NAACL 2019
      Mor Geva, Eric Malmi, Idan Szpektor, Jonathan Berant

      Sentence fusion is the task of joining several independent sentences into a single coherent text. Current datasets for sentence fusion are small and insufficient for training modern neural models. In this paper, we propose a method for automatically-generating fusion examples from raw text and present DISCOFUSE, a large scale dataset for discourse-based sentence fusion. We author a set of rules for identifying a diverse set of discourse phenomena in raw text, and decomposing the text into two independent sentences. We apply our approach on two document collections: Wikipedia and Sports articles, yielding 60 million fusion examples annotated with discourse information required to reconstruct the fused text. We develop a sequence-to-sequence model on DISCOFUSE and thoroughly analyze its strengths and weaknesses with respect to the various discourse phenomena, using both automatic as well as human evaluation. Finally, we conduct transfer learning experiments with WEBSPLIT, a recent dataset for text simplification. We show that pretraining on DISCOFUSE substantially improves performance on WEBSPLIT when viewed as a sentence fusion task.

      Less More
    • NAACL 2019
      Guy Tevet, Gavriel Habib, Vered Shwartz, Jonathan Berant

      Generative Adversarial Networks (GANs) are a promising approach for text generation that, unlike traditional language models (LM), does not suffer from the problem of “exposure bias”. However, A major hurdle for understanding the potential of GANs for text generation is the lack of a clear evaluation metric. In this work, we propose to approximate the distribution of text generated by a GAN, which permits evaluating them with traditional probability-based LM metrics. We apply our approximation procedure on several GAN-based models and show that they currently perform substantially worse than stateof-the-art LMs. Our evaluation procedure promotes better understanding of the relation between GANs and LMs, and can accelerate progress in GAN-based text generation.

      Less More
    • NAACL 2019
      Dor Muhlgay, Jonathan Herzig, Jonathan Berant

      Training models to map natural language instructions to programs given target world supervision only requires searching for good programs at training time. Search is commonly done using beam search in the space of partial programs or program trees, but as the length of the instructions grows finding a good program becomes difficult. In this work, we propose a search algorithm that uses the target world state, known at training time, to train a critic network that predicts the expected reward of every search state. We then score search states on the beam by interpolating their expected reward with the likelihood of programs represented by the search state. Moreover, we search not in the space of programs but in a more compressed state of program executions, augmented with recent entities and actions. On the SCONE dataset, we show that our algorithm dramatically improves performance on all three domains compared to standard beam search and other baselines.

      Less More
    • NAACL 2019
      Hila Gonen, Yoav Goldberg

      Word embeddings are widely used in NLP for a vast range of tasks. It was shown that word embeddings derived from text corpora reflect gender biases in society. This phenomenon is pervasive and consistent across different word embedding models, causing serious concern. Several recent works tackle this problem, and propose methods for significantly reducing this gender bias in word embeddings, demonstrating convincing results. However, we argue that this removal is superficial. While the bias is indeed substantially reduced according to the provided bias definition, the actual effect is mostly hiding the bias, not removing it. The gender bias information is still reflected in the distances between “gender-neutralized” words in the debiased embeddings, and can be recovered from them. We present a series of experiments to support this claim, for two debiasing methods. We conclude that existing bias removal techniques are insufficient, and should not be trusted for providing gender-neutral modeling.

      Less More
    • NAACL 2019
      Shauli Ravfogel, Yoav Goldberg, Tal Linzen

      How do typological properties such as word order and morphological case marking affect the ability of neural sequence models to acquire the syntax of a language? Cross-linguistic comparisons of RNNs' syntactic performance (e.g., on subject-verb agreement prediction) are complicated by the fact that any two languages differ in multiple typological properties, as well as by differences in training corpus. We propose a paradigm that addresses these issues: we create synthetic versions of English, which differ from English in a single typological parameter, and generate corpora for those languages based on a parsed English corpus. We report a series of experiments in which RNNs were trained to predict agreement features for verbs in each of those synthetic languages. Among other findings, (1) performance was higher in subject-verb-object order (as in English) than in subject-object-verb order (as in Japanese), suggesting that RNNs have a recency bias; (2) predicting agreement with both subject and object (polypersonal agreement) improves over predicting each separately, suggesting that underlying syntactic knowledge transfers across the two tasks; and (3) overt morphological case makes agreement prediction significantly easier, regardless of word order.

      Less More
    • ICLR 2019
      Hsin-Yuan Huang, Eunsol Choi, Wen-tau Yih

      Conversational machine comprehension requires a deep understanding of the conversation history. To enable traditional, single-turn models to encode the history comprehensively, we introduce Flow, a mechanism that can incorporate intermediate representations generated during the process of answering previous questions, through an alternating parallel processing structure. Compared to shallow approaches that concatenate previous questions/answers as input, Flow integrates the latent semantics of the conversation history more deeply. Our model, FlowQA, shows superior performance on two recently proposed conversational challenges (+7.2% F1 on CoQA and +4.0% on QuAC). The effectiveness of Flow also shows in other tasks. By reducing sequential instruction understanding to conversational machine comprehension, FlowQA outperforms the best models on all three domains in SCONE, with +1.8% to +4.4% improvement in accuracy.

      Less More
    • ICLR 2019
      Alon Jacovi, Guy Hadash, Einat Kermany, Boaz Carmeli, Ofer Lavi, George Kour, Jonathan Berant

      Deep neural networks work well at approximating complicated functions when provided with data and trained by gradient descent methods. At the same time, there is a vast amount of existing functions that programmatically solve different tasks in a precise manner eliminating the need for training. In many cases, it is possible to decompose a task to a series of functions, of which for some we may prefer to use a neural network to learn the functionality, while for others the preferred method would be to use existing black-box functions. We propose a method for end-to-end training of a base neural network that integrates calls to existing black-box functions. We do so by approximating the black-box functionality with a differentiable neural network in a way that drives the base network to comply with the black-box function interface during the end-to-end optimization process. At inference time, we replace the differentiable estimator with its external black-box non-differentiable counterpart such that the base network output matches the input arguments of the black-box function. Using this "Estimate and Replace" paradigm, we train a neural network, end to end, to compute the input to black-box functionality while eliminating the need for intermediate labels. We show that by leveraging the existing precise black-box function during inference, the integrated model generalizes better than a fully differentiable model, and learns more efficiently compared to RL-based methods.

      Less More
    • ICLR 2019
      Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, Roozbeh Mottaghi

      How do humans navigate to target objects in novel scenes? Do we use the semantic/functional priors we have built over years to efficiently search and navigate? For example, to search for mugs, we search cabinets near the coffee machine and for fruits we try the fridge. In this work, we focus on incorporating semantic priors in the task of semantic navigation. We propose to use Graph Convolutional Networks for incorporating the prior knowledge into a deep reinforcement learning framework. The agent uses the features from the knowledge graph to predict the actions. For evaluation, we use the AI2-THOR framework. Our experiments show how semantic knowledge improves performance significantly. More importantly, we show improvement in generalization to unseen scenes and/or objects. The supplementary video can be accessed at the following link: https://youtu.be/otKjuO805dE

      Less More
    • AAAI 2019
      Arindam Mitra, Peter Clark, Oyvind Tafjord, Chitta Baral

      While in recent years machine learning (ML) based approaches have been the popular approach in developing end-to-end question answering systems, such systems often struggle when additional knowledge is needed to correctly answer the questions. Proposed alternatives involve translating the question and the natural language text to a logical representation and then use logical reasoning. However, this alternative falters when the size of the text gets bigger. To address this we propose an approach that does logical reasoning over premises written in natural language text. The proposed method uses recent features of Answer Set Programming (ASP) to call external NLP modules (which may be based on ML) which perform simple textual entailment. To test our approach we develop a corpus based on the life cycle questions and showed that Our system achieves up to 18% performance gain when compared to standard MCQ solvers.

      Less More
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More
    • AAAI 2019
      Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi

      We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.

      Less More
    • arXiv 2019
      Daniel Khashabi, Erfan Sadeqi Azer, Tushar Khot, Ashish Sabharwal, Dan Roth

      Recent systems for natural language understanding are strong at overcoming linguistic variability for lookup style reasoning. Yet, their accuracy drops dramatically as the number of reasoning steps increases. We present the first formal framework to study such empirical observations, addressing the ambiguity, redundancy, incompleteness, and inaccuracy that the use of language introduces when representing a hidden conceptual space. Our formal model uses two interrelated spaces: a conceptual "meaning space" that is unambiguous and complete but hidden, and a linguistic "symbol space" that captures a noisy grounding of the meaning space in the symbols or words of a language. We apply this framework to study the "connectivity problem" in undirected graphs -- a core reasoning problem that forms the basis for more complex multi-hop reasoning. We show that it is indeed possible to construct a high-quality algorithm for detecting connectivity in the (latent) meaning graph, based on an observed noisy symbol graph, as long as the noise is below our quantified noise level and only a few hops are needed. On the other hand, we also prove an impossibility result: if a query requires a large number (specifically, logarithmic in the size of the meaning graph) of hops, no reasoning system operating over the symbol graph is likely to recover any useful property of the meaning graph. This highlights a fundamental barrier for a class of reasoning problems and systems, and suggests the need to limit the distance between the two spaces, rather than investing in multi-hop reasoning with "many" hops.

      Less More
    • NeurIPS 2018
      Yexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal

      Neural models operating over structured spaces such as knowledge graphs require a continuous embedding of the discrete elements of this space (such as entities) as well as the relationships between them. Relational embeddings with high expressivity, however, have high model complexity, making them computationally difficult to train. We propose a new family of embeddings for knowledge graphs that interpolate between a method with high model complexity and one, namely Holographic embeddings (HolE), with low dimensionality and high training efficiency. This interpolation, termed HolEx, is achieved by concatenating several linearly perturbed copies of original HolE. We formally characterize the number of perturbed copies needed to provably recover the full entity-entity or entity-relation interaction matrix, leveraging ideas from Haar wavelets and compressed sensing. In practice, using just a handful of Haar-based or random perturbation vectors results in a much stronger knowledge completion system. On the Freebase FB15K dataset, HolEx outperforms originally reported HolE by 14.7% on the HITS@10 metric, and the current path-based state-of-the-art method, PTransE, by 4% (absolute).

      Less More