Menu
Viewing 44 papers from 2016
Clear all
    • NIPS • NAMPI Workshop 2016
      Kenton W. Murray and Jayant Krishnamurthy

      We present probabilistic neural programs, a framework for program induction that permits flexible specification of both a computational model and inference algorithm while simultaneously enabling the use of deep neural networks. Probabilistic neural programs combine a computation graph for specifying a neural network with an operator for weighted nondeterministic choice. Thus, a program describes both a collection of decisions as well as the neural network architecture used to make each one. We evaluate our approach on a challenging diagram question answering task where probabilistic neural programs correctly execute nearly twice as many programs as a baseline model.

      Less More
    • CACM 2016
      Amitai Etzioni and Oren Etzioni

      Operational AI systems (for example, self-driving cars) need to obey both the law of the land and our values. We propose AI oversight systems ("AI Guardians") as an approach to addressing this challenge, and to respond to the potential risks associated with increasingly autonomous AI systems. These AI oversight systems serve to verify that operational systems did not stray unduly from the guidelines of their programmers and to bring them back in compliance if they do stray. The introduction of such second-order, oversight systems is not meant to suggest strict, powerful, or rigid (from here on 'strong') controls. Operations systems need a great degree of latitude in order to follow the lessons of their learning from additional data mining and experience and to be able to render at least semi-autonomous decisions (more about this later). However, all operational systems need some boundaries, both in order to not violate the law and to adhere to ethical norms. Developing such oversight systems, AI Guardians, is a major new mission for the AI community.

      Less More
    • ACL 2016
      Sujay Kumar Jauhar, Peter D. Turney, Eduard Hovy

      Question answering requires access to a knowledge base to check facts and reason about information. Knowledge in the form of natural language text is easy to acquire, but difficult for automated reasoning. Highly-structured knowledge bases can facilitate reasoning, but are difficult to acquire. In this paper we explore tables as a semi-structured formalism that provides a balanced compromise to this trade-off. We first use the structure of tables to guide the construction of a dataset of over 9000 multiple-choice questions with rich alignment annotations, easily and efficiently via crowd-sourcing. We then use this annotated data to train a semi-structured feature-driven model for question answering that uses tables as a knowledge base. In benchmark evaluations, we significantly outperform both a strong un-structured retrieval baseline and a highly-structured Markov Logic Network model. Erratum: We used 63 tables in our experiments, not 65 as stated in the paper: 39 for Regents and 24 for Monarch. The tables are those in our accompanying dataset, available on our data page.

      Less More
    • CSCW 2016
      Shih-Wen Huang, Jonathan Bragg, Isaac Cowhey, Oren Etzioni, and Daniel S. Weld

      Successful online communities (e.g., Wikipedia, Yelp, and StackOverflow) can produce valuable content. However, many communities fail in their initial stages. Starting an online community is challenging because there is not enough content to attract a critical mass of active members. This paper examines methods for addressing this cold-start problem in data mining-bootstrappable communities by attracting non-members to contribute to the community.

      Less More
    • AAAI 2016
      Amos Azaria, Jayant Krishnamurthy, and Tom M. Mitchell

      Unlike traditional machine learning methods, humans often learn from natural language instruction. As users become increasingly accustomed to interacting with mobile devices using speech, their interest in instructing these devices in natural language is likely to grow. We introduce our Learning by Instruction Agent (LIA), an intelligent personal agent that users can teach to perform new action sequences to achieve new commands, using solely natural language interaction. LIA uses a CCG semantic parser to ground the semantics of each command in terms of primitive executable procedures defining sensors and effectors of the agent. Given a natural language command that LIA does not understand, it prompts the user to explain how to achieve the command through a sequence of steps, also specified in natural language. A novel lexicon induction algorithm enables LIA to generalize across taught commands, e.g., having been taught how to “forward an email to Alice,” LIA can correctly interpret the command “forward this email to Bob.” A user study involving email tasks demonstrates that users voluntarily teach LIA new commands, and that these taught commands significantly reduce task completion time. These results demonstrate the potential of natural language instruction as a significant, under-explored paradigm for machine learning.

      Less More
    • Award Best Student Paper Award
      AAAI 2016
      Babak Saleh, Ahmed Elgammal, Jacob Feldman, and Ali Farhadi

      The human visual system can spot an abnormal image, and reason about what makes it strange. This task has not received enough attention in computer vision. In this paper we study various types of atypicalities in images in a more comprehensive way than has been done before. We propose a new dataset of abnormal images showing a wide range of atypicalities. We design human subject experiments to discover a coarse taxonomy of the reasons for abnormality. Our experiments reveal three major categories of abnormality: object-centric, scene-centric, and contextual. Based on this taxonomy, we propose a comprehensive computational model that can predict all different types of abnormality in images and outperform prior arts in abnormality recognition.

      Less More
    • AAAI 2016
      Hessam Bagherinezhad, Hannaneh Hajishirzi, Yejin Choi, and Ali Farhadi

      Human vision greatly benefits from the information about sizes of objects. The role of size in several visual reasoning tasks has been thoroughly explored in human perception and cognition. However, the impact of the information about sizes of objects is yet to be determined in AI. We postulate that this is mainly attributed to the lack of a comprehensive repository of size information. In this paper, we introduce a method to automatically infer object sizes, leveraging visual and textual information from web. By maximizing the joint likelihood of textual and visual observations, our method learns reliable relative size estimates, with no explicit human supervision. We introduce the relative size dataset and show that our method outperforms competitive textual and visual baselines in reasoning about size comparisons.

      Less More
    • NAACL 2016
      Mark Yatskar, Vicente Ordonez, and Ali Farhadi

      Obtaining common sense knowledge using current information extraction techniques is extremely challenging. In this work, we instead propose to derive simple common sense statements from fully annotated object detection corpora such as the Microsoft Common Objects in Context dataset. We show that many thousands of common sense facts can be extracted from such corpora at high quality. Furthermore, using WordNet and a novel submodular k-coverage formulation, we are able to generalize our initial set of common sense assertions to unseen objects and uncover over 400k potentially useful facts.

      Less More
    • NAACL 2016
      Jayant Krishnamurthy

      We introduce several probabilistic models for learning the lexicon of a semantic parser. Lexicon learning is the first step of training a semantic parser for a new application domain and the quality of the learned lexicon significantly affects both the accuracy and efficiency of the final semantic parser. Existing work on lexicon learning has focused on heuristic methods that lack convergence guarantees and require significant human input in the form of lexicon templates or annotated logical forms. In contrast, our probabilistic models are trained directly from question/answer pairs using EM and our simplest model has a concave objective that guarantees convergence to a global optimum. An experimental evaluation on a set of 4th grade science questions demonstrates that our models improve semantic parser accuracy (35-70% error reduction) and efficiency (4-25x more sentences per second) relative to prior work despite using less human input. Our models also obtain competitive results on GEO880 without any dataset- specific engineering.

      Less More
    • IJCAI 2016 Code Demo
      Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Peter Clark, Oren Etzioni, and Dan Roth

      Answering science questions posed in natural language is an important AI challenge. Answering such questions often requires non-trivial inference and knowledge that goes beyond factoid retrieval. Yet, most systems for this task are based on relatively shallow Information Retrieval (IR) and statistical correlation techniques operating on large unstructured corpora. We propose a structured inference system for this task, formulated as an Integer Linear Program (ILP), that answers natural language questions using a semi-structured knowledge base derived from text, including questions requiring multi-step inference and a combination of multiple facts. On a dataset of real, unseen science questions, our system significantly outperforms (+14%) the best previous attempt at structured reasoning for this task, which used Markov Logic Networks (MLNs). It also improves upon a previous ILP formulation by 17.7%. When combined with unstructured inference methods, the ILP system significantly boosts overall performance (+10%). Finally, we show our approach is substantially more robust to a simple answer perturbation compared to statistical correlation methods.

      Less More
    • CVPR 2016
      Mark Yatskar, Luke Zettlemoyer, and Ali Farhadi

      This paper introduces situation recognition, the problem of producing a concise summary of the situation an image depicts including: (1) the main activity (e.g., clipping), (2) the participating actors, objects, substances, and locations (e.g., man, shears, sheep, wool, and field) and most importantly (3) the roles these participants play in the activity (e.g., the man is clipping, the shears are his tool, the wool is being clipped from the sheep, and the clipping is in a field). We use FrameNet, a verb and role lexicon devel- oped by linguists, to define a large space of possible sit- uations and collect a large-scale dataset containing over 500 activities, 1,700 roles, 11,000 objects, 125,000 images, and 200,000 unique situations. We also introduce struc- tured prediction baselines and show that, in activity-centric images, situation-driven prediction of objects and activities outperforms independent object and activity recognition.

      Less More
    • CVPR 2016
      Roozbeh Mottaghi, Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi

      In this paper, we study the challenging problem of predicting the dynamics of objects in static images. Given a query object in an image, our goal is to provide a physical understanding of the object in terms of the forces acting upon it and its long term motion as response to those forces. Direct and explicit estimation of the forces and the motion of objects from a single image is extremely challenging. We define intermediate physical abstractions called Newtonian scenarios and introduce Newtonian Neural Network (N3) that learns to map a single image to a state in a Newto- nian scenario. Our evaluations show that our method can reliably predict dynamics of a query object from a single image. In addition, our approach can provide physical rea- soning that supports the predicted dynamics in terms of ve- locity and force vectors. To spur research in this direction we compiled Visual Newtonian Dynamics (VIND) dataset that includes more than 6000 videos aligned with Newto- nian scenarios represented using game engines, and more than 4500 still images with their ground truth dynamics.

      Less More
    • Award OpenCV People's Choice Award
      CVPR 2016
      Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi

      We present YOLO, a new approach to object detection. Prior work on object detection repurposes classifiers to perform detection. Instead, we frame object detection as a regression problem to spatially separated bounding boxes and associated class probabilities. A single neural network pre- dicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. Our unified architecture is extremely fast. Our base YOLO model processes images in real-time at 45 frames per second. A smaller version of the network, Fast YOLO, processes an astounding 155 frames per second while still achieving double the mAP of other real-time detec- tors. Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background. Finally, YOLO learns very general representations of objects. It outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.

      Less More
    • CVPR 2016
      Xiaolong Wang, Ali Farhadi, and Abhinav Gupta

      What defines an action like “kicking ball”? We argue that the true meaning of an action lies in the change or transformation an action brings to the environment. In this paper, we propose a novel representation for actions by modeling an action as a transformation which changes the state of the environment before the action happens (pre-condition) to the state after the action (effect). Motivated by recent advancements of video representation using deep learning, we design a Siamese network which models the action as a transformation on a high-level feature space. We show that our model gives improvements on standard action recognition datasets including UCF101 and HMDB51. More importantly, our approach is able to generalize beyond learned action categories and shows significant performance improvement on cross-category generalization on our new ACT dataset.

      Less More
    • CVPR 2016
      Roozbeh Mottaghi, Hannaneh Hajishirzi, and Ali Fahradi

      With the recent progress in visual recognition, we have already started to see a surge of vision related real-world applications. These applications, unlike general scene understanding, are task oriented and require specific information from visual data. Considering the current growth in new sensory devices, feature designs, feature learning methods, and algorithms, the search in the space of features and models becomes combinatorial. In this paper, we propose a novel cost-sensitive task-oriented recognition method that is based on a combination of linguistic semantics and visual cues. Our task-oriented framework is able to generalize to unseen tasks for which there is no training data and outperforms state-of-the-art cost-based recognition baselines on our new task-based dataset.

      Less More
    • JCDL 2016
      Christopher Clark and Santosh Divvala

      Figures and tables are key sources of information in many scholarly documents. However, current academic search engines do not make use of figures and tables when semantically parsing documents or presenting document summaries to users. To facilitate these applications we develop an algorithm that extracts figures, tables, and captions from documents called "PDFFigures 2.0."Our proposed approach analyzes the structure of individual pages by detecting captions, graphical elements, and chunks of body text, and then locates gures and tables by reasoning about the empty regions within that text. To evaluate our work, we introduce a new dataset of computer science papers, along with ground truth labels for the locations of the gures, tables, and captions within them. Our algorithm achieves impressive results (94% precision at 90% recall) on this dataset surpassing previous state of the art. Further, we show how our framework was used to extract gures from a corpus of over one million papers, and how the resulting extractions were integrated into the user interface of a smart academic search engine, Semantic Scholar (www.semanticscholar.org). Finally, we present results of exploratory data analysis completed on the extracted gures as well as an extension of our method for the task of section title extraction. We release our dataset and code on our project webpage for enabling future research (http://pdgures2.allenai.org).

      Less More
    • AKBC 2016
      Bhavana Dalvi, Sumithra Bhakthavatsalam, Chris Clark, Peter Clark, Oren Etzioni, Anthony Fader, and Dirk Groeneveld

      Recent work on information extraction has suggested that fast, interactive tools can be highly effective; however, creating a usable system is challenging, and few publicly available tools exist. In this paper we present IKE, a new extraction tool that performs fast, interactive bootstrapping to develop high quality extraction patterns for targeted relations. Central to IKE is the notion that an extraction pattern can be treated as a search query over a corpus. To operationalize this, IKE uses a novel query language that is expressive, easy to understand, and fast to execute - essential requirements for a practical system. It is also the first interactive extraction tool to seamlessly integrate symbolic (boolean) and distributional (similarity-based) methods for search. An initial evaluation suggests that relation tables can be populated substantially faster than by manual pattern authoring while retaining accuracy, and more reliably than fully automated tools, an important step towards practical KB construction. We are making IKE publicly available.

      Less More
    • CACM 2016 Video
      Carissa Schoenick, Peter Clark, Oyvind Tafjord, Peter Turney, and Oren Etzioni

      The field of Artificial Intelligence has made great strides forward recently, for example AlphaGo's recent victory against the world champion Lee Sedol in the game of Go, leading to great optimism about the field. But are we really moving towards smarter machines, or are these successes restricted to certain classes of problems, leaving other challenges untouched? In 2016, the Allen Institute for Artificial Intelligence (AI2) ran the Allen AI Science Challenge, a competition to test machines on an ostensibly difficult task, namely answering 8th Grade science questions. Our motivations were to encourage the field to set its sights broader and higher by exploring a problem that appears to require modeling, reasoning, language understanding, and commonsense knowledge, to probe the state of the art on this task, and sow the seeds for possible future breakthroughs. The challenge received a strong response, with 780 teams from all over the world participating. What were the results? This article describes the competition and the interesting outcomes of the challenge.

      Less More
    • SEM 2016
      Saif M. Mohammad, Ekaterina Shutova, and Peter D. Turney

      It is generally believed that a metaphor tends to have a stronger emotional impact than a literal statement; however, there is no quantitative study establishing the extent to which this is true. Further, the mechanisms through which metaphors convey emotions are not well understood. We present the first data-driven study comparing the emotionality of metaphorical expressions with that of their literal counterparts. Our results indicate that metaphorical usages are, on average, significantly more emotional than literal usages. We also show that this emotional content is not simply transferred from the source domain into the target, but rather is a result of meaning composition and interaction of the two domains in the metaphor.

      Less More
    • ICML 2016
      Junyuan Xie, Ross Girshick, and Ali Farhadi

      Clustering is central to many data-driven application domains and has been studied extensively in terms of distance functions and grouping algorithms. Relatively little work has focused on learning representations for clustering. In this paper, we propose Deep Embedded Clustering (DEC), a method that simultaneously learns feature representations and cluster assignments using deep neural networks. DEC learns a mapping from the data space to a lower-dimensional feature space in which it iteratively optimizes a clustering objective. Our experimental evaluations on image and text corpora show significant improvement over state-of-the-art methods.

      Less More
    • ECCV 2016
      Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi

      Diagrams are common tools for representing complex concepts, relationships and events, often when it would be difficult to portray the same information with natural images. Understanding natural images has been extensively studied in computer vision, while diagram understanding has received little attention. In this paper, we study the problem of diagram interpretation, the challenging task of identifying the structure of a diagram and the semantics of its constituents and their relationships. We introduce Diagram Parse Graphs (DPG) as our representation to model the structure of diagrams. We define syntactic parsing of diagrams as learning to infer DPGs for diagrams and study semantic interpretation and reasoning of diagrams in the context of diagram question answering. We devise an LSTM-based method for syntactic parsing of diagrams and introduce a DPG-based attention model for diagram question answering. We compile a new dataset of diagrams with exhaustive annotations of constituents and relationships for about 5,000 diagrams and 15,000 questions and answers. Our results show the significance of our models for syntactic parsing and question answering in diagrams using DPGs.

      Less More
    • ECCV 2016
      Roozbeh Mottaghi, Mohammad Rastegari, Abhinav Gupta, and Ali Farhadi

      What happens if one pushes a cup sitting on a table toward the edge of the table? How about pushing a desk against a wall? In this paper, we study the problem of understanding the movements of objects as a result of applying external forces to them. For a given force vector applied to a specific location in an image, our goal is to predict long-term sequential movements caused by that force. Doing so entails reasoning about scene geometry, objects, their attributes, and the physical rules that govern the movements of objects. We design a deep neural network model that learns long-term sequential dependencies of object movements while taking into account the geometry and appearance of the scene by combining Convolutional and Recurrent Neural Networks. Training our model requires a large-scale dataset of object movements caused by external forces. To build a dataset of forces in scenes, we reconstructed all images in SUN RGB-D dataset in a physics simulator to estimate the physical movements of objects caused by external forces applied to them. Our Forces in Scenes (ForScene) dataset contains 65,000 object movements in 3D which represent a variety of external forces applied to different types of objects. Our experimental evaluations show that the challenging task of predicting long-term movements of objects as their reaction to external forces is possible from a single image. The code and dataset are available at: https://prior.allenai.org/projects/what-happens-if

      Less More
    • ECCV 2016
      Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi

      We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in $32\times$ memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in 58x faster convolutional operations (in terms of number of the high precision operations) and 32x memory savings. XNOR-Nets offer the possibility of running state-of-the-art networks on CPUs (rather than GPUs) in real-time. Our binary networks are simple, accurate, efficient, and work on challenging visual tasks. We evaluate our approach on the ImageNet classification task. The classification accuracy with a Binary-Weight-Network version of AlexNet is the same as the full-precision AlexNet. We compare our method with recent network binarization methods, BinaryConnect and BinaryNets, and outperform these methods by large margins on ImageNet, more than 16% in top-1 accuracy.

      Less More
    • ECCV 2016
      Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta

      Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill. To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.

      Less More
    • HCOMP 2016
      Gunnar A. Sigurdsson, Olga Russakovsky, Ali Farhadi, Ivan Laptev, and Abhinav Gupta

      Large-scale annotated datasets allow AI systems to learn from and build upon the knowledge of the crowd. Many crowdsourcing techniques have been developed for collecting image annotations. These techniques often implicitly rely on the fact that a new input image takes a negligible amount of time to perceive. In contrast, we investigate and determine the most cost-effective way of obtaining high-quality multi-label annotations for temporal data such as videos. Watching even a short 30-second video clip requires a significant time investment from a crowd worker; thus, requesting multiple annotations following a single viewing is an important cost-saving strategy. But how many questions should we ask per video? We conclude that the optimal strategy is to ask as many questions as possible in a HIT (up to 52 binary questions after watching a 30-second video clip in our experiments). We demonstrate that while workers may not correctly answer all questions, the cost-benefit analysis nevertheless favors consensus from multiple such cheap-yet-imperfect iterations over more complex alternatives. When compared with a one-question-per-video baseline, our method is able to achieve a 10% improvement in recall (76.7% ours versus 66.7% baseline) at comparable precision (83.8% ours versus 83.0% baseline) in about half the annotation time (3.8 minutes ours compared to 7.1 minutes baseline). We demonstrate the effectiveness of our method by collecting multi-label annotations of 157 human activities on 1,815 videos.

      Less More
    • ECCV 2016
      Noah Siegel, Zachary Horvitz, Roie Levin, Santosh Divvala, and Ali Farhadi

      ‘Which are the pedestrian detectors that yield a precision above 95% at 25% recall?’ Answering such a complex query involves identifying and analyzing the results reported in figures within several research papers. Despite the availability of excellent academic search engines, retrieving such information poses a cumbersome challenge today as these systems have primarily focused on understanding the text content of scholarly documents. In this paper, we introduce FigureSeer, an end-to-end framework for parsing result-figures, that enables powerful search and retrieval of results in research papers. Our proposed approach automatically localizes figures from research papers, classifies them, and analyses the content of the result-figures. The key challenge in analyzing the figure content is the extraction of the plotted data and its association with the legend entries. We address this challenge by formulating a novel graph-based reasoning approach using a CNN-based similarity metric. We present a thorough evaluation on a real-word annotated dataset to demonstrate the efficacy of our approach.

      Less More
    • ECCV 2016
      Junyuan Xie, Ross Girshick, and Ali Farhadi

      We propose Deep3D, a fully automatic 2D-to-3D conversion algorithm that takes 2D images or video frames as input and outputs stereo 3D image pairs. The stereo images can be viewed with 3D glasses or head-mounted VR displays. Deep3D is trained directly on stereo pairs from a dataset of 3D movies to minimize the pixel-wise reconstruction error of the right view when given the left view. Internally, the Deep3D network estimates a probabilistic disparity map that is used by a differentiable depth image-based rendering layer to produce the right view. Thus Deep3D does not require collecting depth sensor data for supervision.

      Less More
    • CVPR 2016
      Mahyar Najibi, Mohammad Rastegari, and Larry Davis

      We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.

      Less More
    • ICML 2016
      Tudor Achim, Ashish Sabharwal, and Stefano Ermon

      Random projections have played an important role in scaling up machine learning and data mining algorithms. Recently they have also been applied to probabilistic inference to estimate properties of high-dimensional distributions; however , they all rely on the same class of projections based on universal hashing. We provide a general framework to analyze random projections which relates their statistical properties to their Fourier spectrum, which is a well-studied area of theoretical computer science. Using this framework we introduce two new classes of hash functions for probabilistic inference and model counting that show promising performance on synthetic and real-world benchmarks.

      Less More
    • EMNLP 2016
      Samuel Louvan, Chetan Naik, Sadhana Kumaravel, Heeyoung Kwon, Niranjan Balasubramanian, and Peter Clark

      For AI systems to reason about real world situations, they need to recognize which processes are at play and which entities play key roles in them. Our goal is to extract this kind of rolebased knowledge about processes, from multiple sentence-level descriptions. This knowledge is hard to acquire; while semantic role labeling (SRL) systems can extract sentence level role information about individual mentions of a process, their results are often noisy and they do not attempt create a globally consistent characterization of a process. To overcome this, we extend standard within sentence joint inference to inference across multiple sentences. This cross sentence inference promotes role assignments that are compatible across different descriptions of the same process. When formulated as an Integer Linear Program, this leads to improvements over within-sentence inference by nearly 3% in F1. The resulting role-based knowledge is of high quality (with a F1 of nearly 82).

      Less More
    • EMNLP 2016
      Rebecca Sharp, Mihai Surdeanu, Peter Jansen, and Peter Clark

      A common model for question answering (QA) is that a good answer is one that is closely related to the question, where relatedness is often determined using generalpurpose lexical models such as word embeddings. We argue that a better approach is to look for answers that are related to the question in a relevant way, according to the information need of the question, which may be determined through task-specific embeddings. With causality as a use case, we implement this insight in three steps. First, we generate causal embeddings cost-effectively by bootstrapping cause-effect pairs extracted from free text using a small set of seed patterns. Second, we train dedicated embeddings over this data, by using task-specific contexts, i.e., the context of a cause is its effect. Finally, we extend a state-of-the-art reranking approach for QA to incorporate these causal embeddings. We evaluate the causal embedding models both directly with a casual implication task, and indirectly, in a downstream causal QA task using data from Yahoo! Answers. We show that explicitly modeling causality improves performance in both tasks. In the QA task our best model achieves 37.3% P@1, significantly outperforming a strong baseline by 7.7% (relative).

      Less More
    • EMNLP 2016
      Jayant Krishnamurthy, Oyvind Tafjord, and Aniruddha Kembhavi

      Situated question answering is the problem of answering questions about an environment such as an image or diagram. This problem requires jointly interpreting a question and an environment using background knowledge to select the correct answer. We present Parsing to Probabilistic Programs (P3), a novel situated question answering model that can use background knowledge and global features of the question/environment interpretation while retaining efficient approximate inference. Our key insight is to treat semantic parses as probabilistic programs that execute nondeterministically and whose possible executions represent environmental uncertainty. We evaluate our approach on a new, publicly-released data set of 5000 science diagram questions, outperforming several competitive classical and neural baselines.

      Less More
    • COLING 2016
      Peter Jansen, Niranjan Balasubramanian, Mihai Surdeanu, and Peter Clark

      QA systems have been making steady advances in the challenging elementary science exam domain. In this work, we develop an explanation-based analysis of knowledge and inference requirements, which supports a fine-grained characterization of the challenges. In particular, we model the requirements based on appropriate sources of evidence to be used for the QA task. We create requirements by first identifying suitable sentences in a knowledge base that support the correct answer, then use these to build explanations, filling in any necessary missing information. These explanations are used to create a fine-grained categorization of the requirements. Using these requirements, we compare a retrieval and an inference solver on 212 questions. The analysis validates the gains of the inference solver, demonstrating that it answers more questions requiring complex inference, while also providing insights into the relative strengths of the solvers and knowledge sources. We release the annotated questions and explanations as a resource with broad utility for science exam QA, including determining knowledge base construction targets, as well as supporting information aggregation in automated inference.

      Less More
    • NIPS 2016
      Been Kim, Sanmi Koyejo and Rajiv Khanna

      Example-based explanations are widely used in the effort to improve the interpretability of highly complex distributions. However, prototypes alone are rarely sufficient to represent the gist of the complexity. In order for users to construct better mental models and understand complex data distributions, we also need criticism to explain what are not captured by prototypes. Motivated by the Bayesian model criticism framework, we develop MMD-critic which efficiently learns prototypes and criticism, designed to aid human interpretability. A human subject pilot study shows that the MMD-critic selects prototypes and criticism that are useful to facilitate human understanding and reasoning. We also evaluate the prototypes selected by MMD-critic via a nearest prototype classifier, showing competitive performance compared to baselines.

      Less More
    • NIPS 2016
      Shengjia Zhao, Enze Zhou, Ashish Sabharwal, and Stefano Ermon

      A key challenge in sequential decision problems is to determine how many samples are needed for an agent to make reliable decisions with good probabilistic guarantees. We introduce Hoeffding-like concentration inequalities that hold for a random, adaptively chosen number of samples. Our inequalities are tight under natural assumptions and can greatly simplify the analysis of common sequential decision problems. In particular, we apply them to sequential hypothesis testing, best arm identification, and sorting. The resulting algorithms rival or exceed the state of the art both theoretically and empirically.

      Less More
    • Ethics 2016
      Amitai Etzioni and Oren Etzioni

      The growing number of 'smart' instruments, those equipped with AI, has raised concerns because these instruments make autonomous decisions; that is, they act beyond the guidelines provided them by programmers. Hence, the question the makers and users of smart instrument (e.g., driver-less cars) face is how to ensure that these instruments will not engage in unethical conduct (not to be conflated with illegal conduct). The article suggests that to proceed we need a new kind of AI program—oversight programs—that will monitor, audit, and hold operational AI programs accountable.

      Less More
    • AI Magazine 2016
      Peter Clark and Oren Etzioni

      Given the well-known limitations of the Turing Test, there is a need for objective tests to both focus attention on, and measure progress towards, the goals of AI. In this paper we argue that machine performance on standardized tests should be a key component of any new measure of AI, because attaining a high level of performance requires solving significant AI problems involving language understanding and world modeling — critical skills for any machine that lays claim to intelligence. In addition, standardized tests have all the basic requirements of a practical test: they are accessible, easily comprehensible, clearly measurable, and offer a graduated progression from simple tasks to those requiring deep understanding of the world. Here we propose this task as a challenge problem for the community, summarize our state-of-the-art results on math and science tests, and provide supporting datasets (see www.allenai.org/data.html).

      Less More
    • AAAI 2016
      Ashish Sabharwal, Horst Samulowitz, and Gerald Tesauro

      We study a novel machine learning (ML) problem setting of sequentially allocating small subsets of training data amongst a large set of classifiers. The goal is to select a classifier that will give near-optimal accuracy when trained on all data, while also minimizing the cost of misallocated samples. This is motivated by large modern datasets and ML toolkits with many combinations of learning algorithms and hyper- parameters. Inspired by the principle of “optimism under un- certainty,” we propose an innovative strategy, Data Allocation using Upper Bounds (DAUB), which robustly achieves these objectives across a variety of real-world datasets. We further develop substantial theoretical support for DAUB in an idealized setting where the expected accuracy of a classifier trained on n samples can be known exactly. Under these conditions we establish a rigorous sub-linear bound on the regret of the approach (in terms of misallocated data), as well as a rigorous bound on suboptimality of the selected classifier. Our accuracy estimates using real-world datasets only entail mild violations of the theoretical scenario, suggesting that the practical behavior of DAUB is likely to approach the idealized behavior.

      Less More
    • AAAI 2016
      Carolyn Kim, Ashish Sabharwal, and Stefano Ermon

      We consider the problem of sampling from a discrete probability distribution specified by a graphical model. Exact samples can, in principle, be obtained by computing the mode of the original model perturbed with an exponentially many i.i.d. random variables. We propose a novel algorithm that views this as a combinatorial optimization problem and searches for the extreme state using a standard integer linear programming (ILP) solver, appropriately extended to account for the random perturbation. Our technique, GumbelMIP, leverages linear programming (LP) relaxations to evaluate the quality of samples and prune large portions of the search space, and can thus scale to large tree-width models beyond the reach of current exact inference methods. Further, when the optimization problem is not solved to optimality, our method yields a novel approximate sampling technique. We empirically demonstrate that our approach parallelizes well, our exact sampler scales better than alternative approaches, and our approximate sampler yields better quality samples than a Gibbs sampler and a low-dimensional perturbation method.

      Less More
    • AAAI 2016
      Shengjia Zhao, Sorathan Chaturapruek, Ashish Sabharwal, and Stefano Ermon

      Many recent algorithms for approximate model counting are based on a reduction to combinatorial searches over random subsets of the space defined by parity or XOR constraints. Long parity constraints (involving many variables) provide strong theoretical guarantees but are computationally difficult. Short parity constraints are easier to solve but have weaker statistical properties. It is currently not known how long these parity constraints need to be. We close the gap by providing matching necessary and sufficient conditions on the required asymptotic length of the parity constraints. Further, we provide a new family of lower bounds and the first non-trivial upper bounds on the model count that are valid for arbitrarily short XORs. We empirically demonstrate the effectiveness of these bounds on model counting benchmarks and in a Satisfiability Modulo Theory (SMT) application motivated by the analysis of contingency tables in statistics.

      Less More
    • AAAI 2016
      Shuo Yang, Tushar Khot, Kristian Kersting, and Sriraam Natarajan

      Many real world applications in medicine, biology, communication networks, web mining, and economics, among others, involve modeling and learning structured stochastic processes that evolve over continuous time. Existing approaches, however, have focused on propositional domains only. Without extensive feature engineering, it is difficult---if not impossible---to apply them within relational domains where we may have varying number of objects and relations among them. We therefore develop the first relational representation called Relational Continuous-Time Bayesian Networks (RCTBNs) that can address this challenge. It features a nonparametric learning method that allows for efficiently learning the complex dependencies and their strengths simultaneously from sequence data. Our experimental results demonstrate that RCTBNs can learn as effectively as state-of-the-art approaches for propositional tasks while modeling relational tasks faithfully.

      Less More
    • AAAI 2016
      Peter Clark, Oren Etzioni, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, and Peter Turney

      What capabilities are required for an AI system to pass standard 4th Grade Science Tests? Previous work has examined the use of Markov Logic Networks (MLNs) to represent the requisite background knowledge and interpret test questions, but did not improve upon an information retrieval (IR) baseline. In this paper, we describe an alternative approach that operates at three levels of representation and reasoning: information retrieval, corpus statistics, and simple inference over a semi-automatically constructed knowledge base, to achieve substantially improved results. We evaluate the methods on six years of unseen, unedited exam questions from the NY Regents Science Exam (using only non-diagram, multiple choice questions), and show that our overall system’s score is 71.3%, an improvement of 23.8% (absolute) over the MLN-based method described in previous work. We conclude with a detailed analysis, illustrating the complementary strengths of each method in the ensemble. Our datasets are being released to enable further research.

      Less More
    • WSDM 2016
      Bhavana Dalvi, Aditya Mishra, and William W. Cohen

      In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. has shown that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.

      Less More
    • Vanderbilt 2016
      Amitai Etzioni and Oren Etzioni

      AI programs make numerous decisions on their own, lack transparency, and may change frequently. Hence, the article shows, unassisted human agents — such as auditors, accountants, inspectors, and police — cannot ensure that AI guided instruments will abide by the law. Human agents need assistance of AI oversight programs that analyze and oversee the operational AI programs. The article then asks whether operational AI programs should be programmed to enable human users to override them — without that such a move would undermine the legal order. The article next points out that AI operational programs provide very high surveillance capacities, and that hence AI oversight programs are essential for protecting individual rights in the cyber age. The article closes by discussing the argument that AI guided instruments, e.g. robots, lead to endangering much more than the legal order — that they may turn on their makers, or even destroy humanity.

      Less More