Menu
Viewing 6 videos from 2016 in Talks by AI2 Team Members See AI2’s full collection of videos on our YouTube channel.
    • November 19, 2016

      Oren Etzioni

      Artificial Intelligence advocate Oren Etzioni makes a case for the life-saving benefits of AI used wisely to improve our way of life. Acknowledging growing fears about AI’s potential for abuse of power, he asks us to consider how to responsibly balance our desire for greater intelligence and autonomy with the risks inherent in this new and growing technology. Less

      Less More
    • May 23, 2016

      Oren Etzioni

      Oren Etzioni, CEO of the Allen Institute for AI, shares his vision for deploying AI technologies for the common good.

      Less More
    • April 6, 2016

      Ronan Le Bras

      Most problems, from theoretical problems in combinatorics to real-world applications, comprise hidden structural properties not directly captured by the problem definition. A key to the recent progress in automated reasoning and combinatorial optimization has been to automatically uncover and exploit this hidden problem structure, resulting in a dramatic increase in the scale and complexity of the problems within our reach. The most complex tasks, however, still require human abilities and ingenuity. In this talk, I will show how we can leverage human insights to effectively complement and dramatically boost state-of-the-art optimization techniques. I will demonstrate the effectiveness of the approach with a series of scientific discoveries, from experimental designs to materials discovery.

      Less More
    • March 3, 2016

      Ali Farhadi

      Ali Farhadi discusses the history of computer vision and AI.

      Less More
    • March 2, 2016

      Ashish Sabharwal

      Artificial intelligence and machine learning communities have made tremendous strides in the last decade. Yet, the best systems to date still struggle with routine tests of human intelligence, such as standardized science exams posed as-is in natural language, even at the elementary-school level. Can we demonstrate human-like intelligence by building systems that can pass such tests? Unlike typical factoid-style question answering (QA) tasks, these tests challenge a student’s ability to combine multiple facts in various ways, and appeal to broad common-sense and science knowledge. Going beyond arguably shallow information retrieval (IR) and statistical correlation techniques, we view science QA from the lens of combinatorial optimization over a semi-formal knowledge base derived from text. Our structured inference system, formulated as an Integer Linear Program (ILP), turns out to be not only highly complementary to IR methods, but also more robust to question perturbation, as well as substantially more scalable and accurate than prior attempts using probabilistic first-order logic and Markov Logic Networks (MLNs). This talk will discuss fundamental challenges behind the science QA task, the progress we have made, and many challenges that lie ahead.

      Less More
    • January 27, 2016

      Jayant Krishnamurthy

      Lexicon learning is the first step of training a semantic parser for a new application domain, and the quality of the learned lexicon significantly affects both the accuracy and efficiency of the final semantic parser. Existing work on lexicon learning has focused on heuristic methods that lack convergence guarantees and require significant human input in the form of lexicon templates or annotated logical forms. In contrast, the proposed probabilistic models are trained directly from question/answer pairs using EM and the simplest model has a concave objective function that guarantees that EM converges to a global optimum. An experimental evaluation on a data set of 4th grade science questions demonstrates that these models improve semantic parser accuracy (35-70% error reduction) and efficiency (4-25x more sentences per second) relative to prior work, despite using less human input. The models also obtain competitive results on Geoquery without any dataset-specific engineering.

      Less More