Videos

See AI2's full collection of videos on our YouTube channel.
All Years
All Videos
Viewing 131-140 of 158 videos
  • Feature Generation from Knowledge Graphs Thumbnail

    Feature Generation from Knowledge Graphs

    July 30, 2015  |  Matt Gardner
    A lot of attention has recently been given to the creation of large knowledge bases that contain millions of facts about people, things, and places in the world. In this talk I present methods for using these knowledge bases to generate features for machine learning models. These methods view the knowledge base as a graph which can be traversed to find potentially predictive information. I show how these methods can be applied to models of knowledge base completion, relation extraction, and question answering.
  • Consciousness in Biological and Artificial Brains Thumbnail

    Consciousness in Biological and Artificial Brains

    July 10, 2015  |  Christof Koch
    Human and non-human animals not only act in the world but are capable of conscious experience. That is, it feels like something to have a brain and be cold, angry or see red. I will discuss the scientific progress that has been achieved over the past decades in characterizing the behavioral and the neuronal correlates of consciousness, both based on clinical case studies as well as laboratory experiments. I will introduce the Integrated Information Theory (IIT) that explains in a principled manner which physical systems are capable of conscious, subjective experience. The theory explains many biological and medical facts about consciousness and its pathologies in humans, can be extrapolated to more difficult cases, such as fetuses, mice, or non-mammalian brains and has been used to assess the presence of consciousness in individual patients in the clinic. IIT also explains why consciousness evolved by natural selection. The theory predicts that feed-forward networks, such as deep convolutional networks, are not conscious even if they perform tasks that in humans would be associated with conscious experience. Furthermore, and in sharp contrast to widespread functionalist beliefs, IIT implies that digital computers, even if they were to run software faithfully simulating the human brain, would experience next to nothing. That is, while in the biological realm, intelligence and consciousness are intimately related, contemporary developments in AI dissolve that link, giving rise to intelligence without consciousness.
  • Machine Learning with Humans In-the-Loop Thumbnail

    Machine Learning with Humans In-the-Loop

    April 21, 2015  |  Karthik Raman
    In this talk I discuss the challenges of learning from data that results from human behavior. I will present new machine learning models and algorithms that explicitly account for the human decision making process and factors underlying it such as human expertise, skills and needs. The talk will also explore how we can look to optimize human interactions to build robust learning systems with provable performance guarantees. I will also present examples, from the domains of search, recommendation and educational analytics, where we have successfully deployed systems for cost-effectively learning with humans in the loop.
  • Going Beyond Fact-Based Question Answering Thumbnail

    Going Beyond Fact-Based Question Answering

    April 7, 2015  |  Erik T. Mueller
    To solve the AI problem, we need to develop systems that go beyond answering fact-based questions. Watson has been hugely successful at answering fact-based questions, but to solve hard AI tasks like passing science tests and understanding narratives, we need to go beyond simple facts. In this talk, I discuss how the systems I have most recently worked on have approached this problem. Watson for Healthcare answers Doctor's Dilemma medical competition questions, and WatsonPaths answers medical test preparation questions. These systems have achieved some success, but there is still a lot more to be done. Based on my experiences working on these systems, I discuss what I think the priorities should be going forward.
  • Bring Your Own Model: Model-Agnostic Improvements in NLP Thumbnail

    Bring Your Own Model: Model-Agnostic Improvements in NLP

    April 7, 2015  |  Dani Yogatama
    The majority of NLP research focuses on improving NLP systems by designing better model classes (e.g., non-linear models, latent variable models). In this talk, I will describe a complementary approach based on incorporation of linguistic bias and optimization of text representations that is applicable to several model classes. First, I will present a structured regularizer that is suitable for the problem when only some parts of an input are relevant to the prediction task (e.g., sentences in text, entities in scenes of images) and an efficient algorithm based on the alternating direction method of multipliers to solve the resulting optimization problem. I will then show how such regularizer can be used to incorporate linguistic structures into a text classification model. In the second part of the talk, I will present our first step towards building a black box NLP system that automatically chooses the best text representation for a given dataset by treating it as a global optimization problem. I will also briefly describe an improved algorithm that can generalize across multiple datasets for faster optimization. I will conclude by discussing how such a framework can be applied to other NLP problems.
  • Learning from Large, Structured Examples Thumbnail

    Learning from Large, Structured Examples

    March 31, 2015  |  
    In many real-world applications of AI and machine learning, such as natural language processing, computer vision and knowledge base construction, data sources possess a natural internal structure, which can be exploited to improve predictive accuracy. Sometimes the structure can be very large, containing many interdependent inputs and outputs. Learning from data with large internal structure poses many compelling challenges, one of which is that fully-labeled examples (required for supervised learning) are difficult to acquire. This is especially true in applications like image segmentation, annotating video data, and knowledge base construction.
  • Distantly Supervised Information Extraction Using Bootstrapped Patterns Thumbnail

    Distantly Supervised Information Extraction Using Bootstrapped Patterns

    March 27, 2015  |  Sonal Gupta
    Although most work in information extraction (IE) focuses on tasks that have abundant training data, in practice, many IE problems do not have any supervised training data. State-of-the-art supervised techniques like conditional random fields are impractical for such real world applications because: (1) they require large and expensive labeled corpora; (2) it is difficult to interpret them and analyze errors, an often-ignored but important feature; and (3) they are hard to calibrate, for example, to reliably extract only high-precision extractions.
  • Exploiting Parallel News Streams for Relation Extraction Thumbnail

    Exploiting Parallel News Streams for Relation Extraction

    March 17, 2015  |  Congle Zhang
    Most approaches to relation extraction, the task of extracting ground facts from natural language text, are based on machine learning and thus starved by scarce training data. Manual annotation is too expensive to scale to a comprehensive set of relations. Distant supervision, which automatically creates training data, only works with relations that already populate a knowledge base (KB). Unfortunately, KBs such as FreeBase rarely cover event relations (e.g. “person travels to location”). Thus, the problem of extracting a wide range of events — e.g., from news streams — is an important, open challenge.
  • Language and Perceptual Categorization in Computer Vision Thumbnail

    Language and Perceptual Categorization in Computer Vision

    March 12, 2015  |  Vicente Ordonez
    Recently, there has been great progress in both computer vision and natural language processing in representing and recognizing semantic units like objects, attributes, named entities, or constituents. These advances provide opportunities to create systems able to interpret and describe the visual world using natural language. This is in contrast to traditional computer vision systems, which typically output a set of disconnected labels, object locations, or annotations for every pixel in an image. The rich visually descriptive language produced by people incorporates world knowledge and human intuition that often can not be captured by other types of annotations. In this talk, I will present several approaches that explore the connections between language, perception, and vision at three levels: learning how to name objects, generating referring expressions for objects in natural scenes, and producing general image descriptions. These methods provide a framework to augment computer vision systems with linguistic information and to take advantage of the vast amount of text associated with images on the web. I will also discuss some of the intuitions from linguistics and perception behind these efforts and how they potentially connect to the larger goal of creating visual systems that can better learn from and communicate with people.
  • Learning and Sampling Scalable Graph Models Thumbnail

    Learning and Sampling Scalable Graph Models

    March 11, 2015  |  Joel Pfeiffer
    Networks provide an effective representation to model many real-world domains, with edges (e.g., friendships, citations, hyperlinks) representing relationships between items (e.g., individuals, papers, webpages). By understanding common network features, we can develop models of the distribution from which the network was likely sampled. These models can be incorporated into real world tasks, such as modeling partially observed networks for improving relational machine learning, performing hypothesis tests for anomaly detection, or simulating algorithms on large scale (or future) datasets. However, naively sampling networks does not scale to real-world domains; for example, drawing a single random network sample consisting of a billion users would take approximately a decade with modern hardware.