Allen Institute for AI

Datasets

Viewing 1-3 of 3 datasets
  • Quoref

    24K QA pairs over 4.7K paragraphs, split between train (19K QAs), development (2.4K QAs) and a hidden test partition (2.5K QAs).AllenNLP, AI2 Irvine • 2019Quoref is a QA dataset which tests the coreferential reasoning capability of reading comprehension systems. In this span-selection benchmark containing 24K questions over 4.7K paragraphs from Wikipedia, a system must resolve hard coreferences before selecting the appropriate span(s) in the paragraphs for answering questions.
  • ROPES

    14k QA pairs over 1.7K paragraphs, split between train (10k QAs), development (1.6k QAs) and a hidden test partition (1.7k QAs).AllenNLP, AI2 Irvine • 2019ROPES is a QA dataset which tests a system's ability to apply knowledge from a passage of text to a new situation. A system is presented a background passage containing a causal or qualitative relation(s), a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the back-ground passage in the context of the situation.
  • DROP

    The DROP dataset contains 96k QA pairs over 6.7K paragraphs, split between train (77k QAs), development (9.5k QAs) and a hidden test partition (9.5k QAs).AllenNLP, AI2 Irvine • 2019DROP is a QA dataset that tests the comprehensive understanding of paragraphs. In this crowdsourced, adversarially-created, 96k question-answering benchmark, a system must resolve multiple references in a question, map them onto a paragraph, and perform discrete operations over them (such as addition, counting, or sorting).