Datasets

AI2 Irvine
All Years
Viewing 1-4 of 4 datasets
  • ZEST: ZEroShot learning from Task descriptions

    ZEST is a benchmark for zero-shot generalization to unseen NLP tasks, with 25K labeled instances across 1,251 different tasks.AI2 Irvine, Mosaic, AllenNLP • 2020ZEST tests whether NLP systems can perform unseen tasks in a zero-shot way, given a natural language description of the task. It is an instantiation of our proposed framework "learning from task descriptions". The tasks include classification, typed entity extraction and relationship extraction, and each task is paired with 20 different annotated (input, output) examples. ZEST's structure allows us to systematically test whether models can generalize in five different ways.
  • Quoref

    24K Question/Answer (QA) pairs over 4.7K paragraphs, split between train (19K QAs), development (2.4K QAs) and a hidden test partition (2.5K QAs).AllenNLP, AI2 Irvine • 2019Quoref is a QA dataset which tests the coreferential reasoning capability of reading comprehension systems. In this span-selection benchmark containing 24K questions over 4.7K paragraphs from Wikipedia, a system must resolve hard coreferences before selecting the appropriate span(s) in the paragraphs for answering questions.
  • Reasoning Over Paragraph Effects in Situations (ROPES)

    14k QA pairs over 1.7K paragraphs, split between train (10k QAs), development (1.6k QAs) and a hidden test partition (1.7k QAs).AllenNLP, AI2 Irvine • 2019ROPES is a QA dataset which tests a system's ability to apply knowledge from a passage of text to a new situation. A system is presented a background passage containing a causal or qualitative relation(s), a novel situation that uses this background, and questions that require reasoning about effects of the relationships in the back-ground passage in the context of the situation.
  • Discrete Reasoning Over the content of Paragraphs (DROP)

    The DROP dataset contains 96k Question and Answering pairs (QAs) over 6.7K paragraphs, split between train (77k QAs), development (9.5k QAs) and a hidden test partition (9.5k QAs).AllenNLP, AI2 Irvine • 2019DROP is a QA dataset that tests the comprehensive understanding of paragraphs. In this crowdsourced, adversarially-created, 96k question-answering benchmark, a system must resolve multiple references in a question, map them onto a paragraph, and perform discrete operations over them (such as addition, counting, or sorting).
AI2 Irvine
All Years