Menu
Viewing 181-192 of 192 papers
Clear all
    • Award Best Paper Award
      AKBC 2014
      Peter Clark, Niranjan Balasubramanian, Sumithra Bhakthavatsalam, Kevin Humphreys, Jesse Kinkead, Ashish Sabharwal, and Oyvind Tafjord

      While there has been tremendous progress in automatic database population in recent years, most of human knowledge does not naturally fit into a database form. For example, knowledge that "metal objects can conduct electricity" or "animals grow fur to help them stay warm" requires a substantially different approach to both acquisition and representation. This kind of knowledge is important because it can support inference e.g., (with some associated confidence) if an object is made of metal then it can conduct electricity; if an animal grows fur then it will stay warm. If we want our AI systems to understand and reason about the world, then acquisition of this kind of inferential knowledge is essential. In this paper, we describe our work on automatically constructing an inferential knowledge base, and applying it to a question-answering task. Rather than trying to induce rules from examples, or enter them by hand, our goal is to acquire much of this knowledge directly from text. Our premise is that much inferential knowledge is written down explicitly, in particular in textbooks, and can be extracted with reasonable reliability. We describe several challenges that this approach poses, and innovative, partial solutions that we have developed. Finally we speculate on the longer-term evolution of this work.

      Less More
    • International Conference on Principles and Practice of Constraint Programming 2014
      Ashish Sabharwal and Horst Samulowitz

      Novel search space splitting techniques have recently been successfully exploited to paralleliz Constraint Programming and Mixed Integer Programming solvers. We first show how universal hashing can be used to extend one such interesting approach to a generalized setting that goes beyond discrepancy-based search, while still retaining strong theoretical guarantees. We then explain that such static or explicit splitting approaches are not as effective in the context of parallel combinatorial search with intensive knowledge acquisition and sharing such as parallel SAT, where implicit splitting through clause sharing appears to dominate. Furthermore, we show that in a parallel setting there exists a surprising tradeoff between the well-known communication cost for knowledge sharing across multiple compute nodes and the so far neglected cost incurred by the computational load per node. We provide experimental evidence that one can successfully exploit this tradeoff and achieve reasonable speedups in parallel SAT solving beyond 16 cores.

      Less More
    • AAAI 2014
      Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and Oren Etzioni

      Automatically solving geometry questions is a longstanding AI problem. A geometry question typically includes a textual description accompanied by a diagram. The first step in solving geometry questions is diagram understanding, which consists of identifying visual elements in the diagram, their locations, their geometric properties, and aligning them to corresponding textual descriptions. In this paper, we present a method for diagram understanding that identifies visual elements in a diagram while maximizing agreement between textual and visual data. We show that the method's objective function is submodular; thus we are able to introduce an efficient method for diagram understanding that is close to optimal. To empirically evaluate our method, we compile a new dataset of geometry questions (textual descriptions and diagrams) and compare with baselines that utilize standard vision techniques. Our experimental evaluation shows an F1 boost of more than 17% in identifying visual elements and 25% in aligning visual elements with their textual descriptions.

      Less More
    • ACL 2014
      Peter Jansen, Mihai Surdeanu, and Peter Clark

      We propose a robust answer reranking model for non-factoid questions that integrates lexical semantics with discourse information, driven by two representations of discourse: a shallow representation centered around discourse markers, and a deep one based on Rhetorical Structure Theory. We evaluate the proposed model on two corpora from different genres and domains: one from Yahoo! Answers and one from the biology domain, and two types of non-factoid questions: manner and reason. We experimentally demonstrate that the discourse structure of nonfactoid answers provides information that is complementary to lexical semantic similarity between question and answer, improving performance up to 24% (relative) over a state-of-the-art model that exploits lexical semantic similarity alone. We further demonstrate excellent domain transfer of discourse information, suggesting these discourse features have general utility to non-factoid question answering.

      Less More
    • ACL 2013
      Xuchen Yao, Benjamin Van Durme, and Peter Clark

      Information Retrieval (IR) and Answer Extraction are often designed as isolated or loosely connected components in Question Answering (QA), with repeated overengineering on IR, and not necessarily performance gain for QA. We propose to tightly integrate them by coupling automatically learned features for answer extraction to a shallow-structured IR model. Our method is very quick to implement, and significantly improves IR for QA (measured in Mean Average Precision and Mean Reciprocal Rank) by 10%-20% against an uncoupled retrieval baseline in both document and passage retrieval, which further leads to a downstream 20% improvement in QA F1.

      Less More
    • ACL 2013
      Xuchen Yao, Benjamin Van Durme, Chris Callision-Burch, and Peter Clark

      Fast alignment is essential for many natural language tasks. But in the setting of monolingual alignment, previous work has not been able to align more than one sentence pair per second. We describe a discriminatively trained monolingual word aligner that uses a Conditional Random Field to globally decode the best alignment with features drawn from source and target sentences. Using just part-of-speech tags and WordNet as external resources, our aligner gives state-of-the-art result, while being an order-of-magnitude faster than the previous best performing system.

      Less More
    • NAACL 2013
      Xuchen Yao, Benjamin Van Durme, Chris Callision-Burch, and Peter Clark

      Our goal is to extract answers from preretrieved sentences for Question Answering (QA). We construct a linear-chain Conditional Random Field based on pairs of questions and their possible answer sentences, learning the association between questions and answer types. This casts answer extraction as an answer sequence tagging problem for the first time, where knowledge of shared structure between question and source sentence is incorporated through features based on Tree Edit Distance (TED). Our model is free of manually created question and answer templates, fast to run (processing 200 QA pairs per second excluding parsing time), and yields an F1 of 63.3% on a new public dataset based on prior TREC QA evaluations. The developed system is open-source, and includes an implementation of the TED model that is state of the art in the task of ranking QA pairs.

      Less More
    • EMNLP 2013
      Xuchen Yao, Benjamin Van Durme, Chris Callision-Burch, and Peter Clark

      We introduce a novel discriminative model for phrase-based monolingual alignment using a semi-Markov CRF. Our model achieves stateof-the-art alignment accuracy on two phrasebased alignment datasets (RTE and paraphrase), while doing significantly better than other strong baselines in both non-identical alignment and phrase-only alignment. Additional experiments highlight the potential benefit of our alignment model to RTE, paraphrase identification and question answering, where even a naive application of our model's alignment score approaches the state of the art.

      Less More
    • AKBC 2013
      Xiao Ling, Dan Weld, and Peter Clark

      Knowledge of objects and their parts, meronym relations, are at the heart of many question-answering systems, but manually encoding these facts is impractical. Past researchers have tried hand-written patterns, supervised learning, and bootstrapped methods, but achieving both high precision and recall has proven elusive. This paper reports on a thorough exploration of distant supervision to learn a meronym extractor for the domain of college biology. We introduce a novel algorithm, generalizing the "at least one" assumption of multi-instance learning to handle the case where a fixed (but unknown) percentage of bag members are positive examples. Detailed experiments compare strategies for mention detection, negative example generation, leveraging out-of-domain meronyms, and evaluate the benefit of our multi-instance percentage model.

      Less More
    • EMNLP 2013
      Aju Thalappillil Scaria, Jonathan Berant, Mengqiu Wang, Christopher D. Manning, Justin Lewis, Brittany Harding, and Peter Clark

      Biological processes are complex phenomena involving a series of events that are related to one another through various relationships. Systems that can understand and reason over biological processes would dramatically improve the performance of semantic applications involving inference such as question answering (QA) — specifically "How?" and "Why?" questions. In this paper, we present the task of process extraction, in which events within a process and the relations between the events are automatically extracted from text. We represent processes by graphs whose edges describe a set of temporal, causal and co-reference event-event relations, and characterize the structural properties of these graphs (e.g., the graphs are connected). Then, we present a method for extracting relations between the events, which exploits these structural properties by performing joint inference over the set of extracted relations. On a novel dataset containing 148 descriptions of biological processes (released with this paper), we show significant improvement comparing to baselines that disregard process structure.

      Less More
    • CIKM • AKBC 2013
      Peter Clark, Phil Harrison, and Niranjan Balasubramanian

      Our long-term interest is in machines that contain large amounts of general and scientific knowledge, stored in a "computable" form that supports reasoning and explanation. As a medium-term focus for this, our goal is to have the computer pass a fourth-grade science test, anticipating that much of the required knowledge will need to be acquired semi-automatically. This paper presents the first step towards this goal, namely a blueprint of the knowledge requirements for an early science exam, and a brief description of the resources, methods, and challenges involved in the semiautomatic acquisition of that knowledge. The result of our analysis suggests that as well as fact extraction from text and statistically driven rule extraction, three other styles of automatic knowledge-base construction (AKBC) would be useful: acquiring definitional knowledge, direct "reading" of rules from texts that state them, and, given a particular representational framework (e.g., qualitative reasoning), acquisition of specific instances of those models from text (e..g, specific qualitative models).

      Less More
    • NAACL-HLT • AKBC Workshop 2012
      Peter Clark, Phil Harrison, Niranjan Balasubramanian, and Oren Etzioni

      As part of our work on building a "knowledgeable textbook" about biology, we are developing a textual question-answering (QA) system that can answer certain classes of biology questions posed by users. In support of that, we are building a "textual KB" - an assembled set of semi-structured assertions based on the book - that can be used to answer users' queries, can be improved using global consistency constraints, and can be potentially validated and corrected by domain experts. Our approach is to view the KB as systematically caching answers from a QA system, and the QA system as assembling answers from the KB, the whole process kickstarted with an initial set of textual extractions from the book text itself. Although this research is only in a preliminary stage, we summarize our progress and lessons learned to date.

      Less More