Menu
Viewing 3 papers from 2019
Clear all
    • AAAI 2019
      Arindam Mitra, Peter Clark, Oyvind Tafjord, Chitta Baral

      While in recent years machine learning (ML) based approaches have been the popular approach in developing end-to-end question answering systems, such systems often struggle when additional knowledge is needed to correctly answer the questions. Proposed alternatives involve translating the question and the natural language text to a logical representation and then use logical reasoning. However, this alternative falters when the size of the text gets bigger. To address this we propose an approach that does logical reasoning over premises written in natural language text. The proposed method uses recent features of Answer Set Programming (ASP) to call external NLP modules (which may be based on ML) which perform simple textual entailment. To test our approach we develop a corpus based on the life cycle questions and showed that Our system achieves up to 18% performance gain when compared to standard MCQ solvers.

      Less More
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More
    • AAAI 2019
      Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi

      We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.

      Less More