Menu
Viewing 1-20 of 192 papers
Clear all
    • AAAI 2019
      Arindam Mitra, Peter Clark, Oyvind Tafjord, Chitta Baral

      While in recent years machine learning (ML) based approaches have been the popular approach in developing end-to-end question answering systems, such systems often struggle when additional knowledge is needed to correctly answer the questions. Proposed alternatives involve translating the question and the natural language text to a logical representation and then use logical reasoning. However, this alternative falters when the size of the text gets bigger. To address this we propose an approach that does logical reasoning over premises written in natural language text. The proposed method uses recent features of Answer Set Programming (ASP) to call external NLP modules (which may be based on ML) which perform simple textual entailment. To test our approach we develop a corpus based on the life cycle questions and showed that Our system achieves up to 18% performance gain when compared to standard MCQ solvers.

      Less More
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More
    • AAAI 2019
      Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi

      We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation.

      Less More
    • NIPS 2018
      Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc Le, Ni Lao

      This paper presents Memory Augmented Policy Optimization (MAPO): a novel policy optimization formulation that incorporates a memory buffer of promising trajectories to reduce the variance of policy gradient estimates for deterministic environments with discrete actions. The formulation expresses the expected return objective as a weighted sum of two terms: an expectation over a memory of trajectories with high rewards, and a separate expectation over the trajectories outside the memory. We propose 3 techniques to make an efficient training algorithm for MAPO: (1) distributed sampling from inside and outside memory with an actor-learner architecture; (2) a marginal likelihood constraint over the memory to accelerate training; (3) systematic exploration to discover high reward trajectories. MAPO improves the sample efficiency and robustness of policy gradient, especially on tasks with a sparse reward. We evaluate MAPO on weakly supervised program synthesis from natural language with an emphasis on generalization. On the WIKITABLEQUESTIONS benchmark we improve the state-of-the-art by 2.5%, achieving an accuracy of 46.2%, and on the WIKISQL benchmark, MAPO achieves an accuracy of 74.9% with only weak supervision, outperforming several strong baselines with full supervision. Our code is open sourced at https://github.com/crazydonkey200/neural-symbolic-machines.

      Less More
    • NIPS 2018
      Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson

      Machine understanding of complex images is a key goal of artificial intelligence. One challenge underlying this task is that visual scenes contain multiple inter-related objects, and that global context plays an important role in interpreting the scene. A natural modeling framework for capturing such effects is structured prediction, which optimizes over complex labels, while modeling within-label interactions. However, it is unclear what principles should guide the design of a structured prediction model that utilizes the power of deep learning components. Here we propose a design principle for such architectures that follows from a natural requirement of permutation invariance. We prove a necessary and sufficient characterization for architectures that follow this invariance, and discuss its implication on model design. Finally, we show that the resulting model achieves new state of the art results on the Visual Genome scene graph labeling benchmark, outperforming all recent approaches.

      Less More
    • NIPS 2018
      Yexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal

      Neural models operating over structured spaces such as knowledge graphs require a continuous embedding of the discrete elements of this space (such as entities) as well as the relationships between them. Relational embeddings with high expressivity, however, have high model complexity, making them computationally difficult to train. We propose a new family of embeddings for knowledge graphs that interpolate between a method with high model complexity and one, namely Holographic embeddings (HolE), with low dimensionality and high training efficiency. This interpolation, termed HolEx, is achieved by concatenating several linearly perturbed copies of original HolE. We formally characterize the number of perturbed copies needed to provably recover the full entity-entity or entity-relation interaction matrix, leveraging ideas from Haar wavelets and compressed sensing. In practice, using just a handful of Haar-based or random perturbation vectors results in a much stronger knowledge completion system. On the Freebase FB15K dataset, HolEx outperforms originally reported HolE by 14.7% on the HITS@10 metric, and the current path-based state-of-the-art method, PTransE, by 4% (absolute).

      Less More
    • EMNLP 2018
      Jonathan Herzig, Jonathan Berant

      Building a semantic parser quickly in a new domain is a fundamental challenge for conversational interfaces, as current semantic parsers require expensive supervision and lack the ability to generalize to new domains. In this paper, we introduce a zero-shot approach to semantic parsing that can parse utterances in unseen domains while only being trained on examples in other source domains. First, we map an utterance to an abstract, domainindependent, logical form that represents the structure of the logical form, but contains slots instead of KB constants. Then, we replace slots with KB constants via lexical alignment scores and global inference. Our model reaches an average accuracy of 53.1% on 7 domains in the OVERNIGHT dataset, substantially better than other zero-shot baselines, and performs as good as a parser trained on over 30% of the target domain examples.

      Less More
    • EMNLP • Workshop: Analyzing and interpreting neural networks for NLP 2018
      Alon Jacovi, Oren Sar Shalom, Yoav Goldberg

      We present an analysis into the inner workings of Convolutional Neural Networks (CNNs) for processing text. CNNs used for computer vision can be interpreted by projecting filters into image space, but for discrete sequence inputs CNNs remain a mystery. We aim to understand the method by which the networks process and classify text. We examine common hypotheses to this problem: that filters, accompanied by global max-pooling, serve as ngram detectors. We show that filters may capture several different semantic classes of ngrams by using different activation patterns, and that global max-pooling induces behavior which separates important ngrams from the rest. Finally, we show practical use cases derived from our findings in the form of model interpretability (explaining a trained model by deriving a concrete identity for each filter, bridging the gap between visualization tools in vision tasks and NLP) and prediction interpretability (explaining predictions).

      Less More
    • EMNLP • Workshop: Analyzing and interpreting neural networks for NLP 2018
      Shauli Ravfogel, Francis M. Tyers, Yoav Goldberg

      Sequential neural networks models are powerful tools in a variety of Natural Language Processing (NLP) tasks. The sequential nature of these models raises the questions: to what extent can these models implicitly learn hierarchical structures typical to human language, and what kind of grammatical phenomena can they acquire? We focus on the task of agreement prediction in Basque, as a case study for a task that requires implicit understanding of sentence structure and the acquisition of a complex but consistent morphological system. Analyzing experimental results from two syntactic prediction tasks - verb number prediction and suffix recovery - we find that sequential models perform worse on agreement prediction in Basque than one might expect on the basis of a previous agreement prediction work in English. Tentative findings based on diagnostic classifiers suggest the network makes use of local heuristics as a proxy for the hierarchical structure of the sentence. We propose the Basque agreement prediction task as challenging benchmark for models that attempt to learn regularities in human language.

      Less More
    • EMNLP 2018
      Yanai Elazar, Yoav Goldberg

      Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in—and can be recovered from—the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to—and likely condition on—demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features.

      Less More
    • EMNLP 2018
      Asaf Amrami, Yoav Goldberg

      An established method for Word Sense Induction (WSI) uses a language model to predict probable substitutes for target words, and induces senses by clustering these resulting substitute vectors. We replace the ngram-based language model (LM) with a recurrent one. Beyond being more accurate, the use of the recurrent LM allows us to effectively query it in a creative way, using what we call dynamic symmetric patterns. The combination of the RNN-LM and the dynamic symmetric patterns results in strong substitute vectors for WSI, allowing to surpass the current state-of-the-art on the SemEval 2013 WSI shared task by a large margin.

      Less More
    • EMNLP 2018
      Todor Mihaylov, Peter Clark, Tushar Khot, Ashish Sabharwal

      We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance.

      Less More
    • EMNLP 2018
      Niket Tandon, Bhavana Dalvi Mishra, Joel Grus, Wen-tau Yih, Antoine Bosselut, Peter Clark

      Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.

      Less More
    • EMNLP 2018
      Ge Gao, Eunsol Choi, Yejin Choi and Luke Zettlemoyer

      We present end-to-end neural models for detecting metaphorical word use in context. We show that relatively standard BiLSTM models which operate on complete sentences work well in this setting, in comparison to previous work that used more restricted forms of linguistic context. These models establish a new state-of-the-art on existing verb metaphor detection benchmarks, and show strong performance on jointly predicting the metaphoricity of all words in a running text.

      Less More
    • EMNLP 2018
      Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy Liang and Luke Zettlemoyer

      We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at http://quac.ai.

      Less More
    • EMNLP 2018
      Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi

      Given a partial description like"she opened the hood of the car,"humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.

      Less More
    • EMNLP 2018
      Dipendra Misra, Ming-Wei Chang, Xiaodong He, Wen-tau Yih

      Semantic parsing from denotations faces two key challenges in model training: (1) given only the denotations (e.g., answers), search for good candidate semantic parses, and (2) choose the best model update algorithm. We propose effective and general solutions to each of them. Using policy shaping, we bias the search procedure towards semantic parses that are more compatible to the text, which provide better supervision signals for training. In addition, we propose an update equation that generalizes three different families of learning algorithms, which enables fast model exploration. When experimented on a recently proposed sequential question answering dataset, our framework leads to a new state-of-theart model that outperforms previous work by 5.0% absolute on exact match accuracy.

      Less More
    • EMNLP 2018
      Dongyeop Kang, Tushar Khot, Ashish Sabharwal and Peter Clark

      Most textual entailment models focus on lexical gaps between the premise text and the hypothesis, but rarely on knowledge gaps. We focus on filling these knowledge gaps in the Science Entailment task, by leveraging an external structured knowledge base (KB) of science facts. Our new architecture combines standard neural entailment models with a knowledge lookup module. To facilitate this lookup, we propose a fact-level decomposition of the hypothesis, and verifying the resulting sub-facts against both the textual premise and the structured KB. Our model, NSnet, learns to aggregate predictions from these heterogeneous data formats. On the SciTail dataset, NSnet outperforms a simpler combination of the two predictions by 3% and the base entailment model by 5%.

      Less More
    • EMNLP 2018
      Hao Peng, Roy Schwartz, Sam Thomson, and Noah A. Smith

      Despite the tremendous empirical success of neural models in natural language processing, many of them lack the strong intuitions that accompany classical machine learning approaches. Recently, connections have been shown between convolutional neural networks (CNNs) and weighted finite state automata (WFSAs), leading to new interpretations and insights. In this work, we show that some recurrent neural networks also share this connection to WFSAs. We characterize this connection formally, defining rational recurrences to be recurrent hidden state update functions that can be written as the Forward calculation of a finite set of WFSAs. We show that several recent neural models use rational recurrences. Our analysis provides a fresh view of these models and facilitates devising new neural architectures that draw inspiration from WFSAs. We present one such model, which performs better than two recent baselines on language modeling and text classification. Our results demonstrate that transferring intuitions from classical models like WFSAs can be an effective approach to designing and understanding neural models.

      Less More
    • EMNLP 2018
      Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A. Smith

      We introduce the syntactic scaffold, an approach to incorporating syntactic information into semantic tasks. Syntactic scaffolds avoid expensive syntactic processing at runtime, only making use of a treebank during training, through a multitask objective. We improve over strong baselines on PropBank semantics, frame semantics, and coreference resolution, achieving competitive performance on all three tasks.

      Less More