Menu
Viewing 7 papers from 2019 in AllenNLP
Clear all
    • ACL 2019
      Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, Luke Zettlemoyer

      Multi-hop reading comprehension (RC) questions are challenging because they require reading and reasoning over multiple paragraphs. We argue that it can be difficult to construct large multi-hop RC datasets. For example, even highly compositional questions can be answered with a single hop if they target specific entity types, or the facts needed to answer them are redundant. Our analysis is centered on HotpotQA, where we show that single-hop reasoning can solve much more of the dataset than previously thought. We introduce a single-hop BERT-based RC model that achieves 67 F1---comparable to state-of-the-art multi-hop models. We also design an evaluation setting where humans are not shown all of the necessary paragraphs for the intended multi-hop reasoning but can still answer over 80% of questions. Together with detailed error analysis, these results suggest there should be an increasing focus on the role of evidence in multi-hop reasoning and possibly even a shift towards information retrieval style evaluations with large and diverse evidence collections.

      Less More
    • NAACL-HLT 2019
      Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, Matt Gardner

      Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new English reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-created, 96k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic parsing literature on this dataset and show that the best systems only achieve 32.7% F1 on our generalized accuracy metric, while expert human performance is 96.0%. We additionally present a new model that combines reading comprehension methods with simple numerical reasoning to achieve 47.0% F1.

      Less More
    • NAACL 2019
      Nelson F. Liu, Roy Schwartz, Noah Smith

      Several datasets have recently been constructed to expose brittleness in models trained on existing benchmarks. While model performance on these challenge datasets is significantly lower compared to the original benchmark, it is unclear what particular weaknesses they reveal. For example, a challenge dataset may be difficult because it targets phenomena that current models cannot capture, or because it simply exploits blind spots in a model's specific training set. We introduce inoculation by fine-tuning, a new analysis method for studying challenge datasets by exposing models (the metaphorical patient) to a small amount of data from the \term dataset (a metaphorical pathogen) and assessing how well they can adapt. We apply our method to analyze the NLI "stress tests" (Naike et al., 2018) and the Adversarial SQuAD dataset (Jia and Liang, 2017). We show that after slight exposure, some of these datasets are no longer challenging, while others remain difficult. Our results indicate that failures on challenge datasets may lead to very different conclusions about models, training datasets, and the challenge datasets themselves.

      Less More
    • Iterative Search for Weakly Supervised Semantic Parsing
      NAACL 2019
      Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke Zettlemoyer, Ed Hovy

      Training semantic parsers from question-answer pairs typically involves searching over an exponentially large space of logical forms, and an unguided search can easily be misled by spurious logical forms that coincidentally evaluate to the correct answer. We propose a novel iterative training algorithm that alternates between searching for consistent logical forms and maximizing the marginal likelihood of the retrieved ones, while gradually increasing the complexity of the logical forms being searched for. This training scheme lets us start from a small set of simple yet precise logical forms, and iteratively train models that provide guidance to subsequent ones that search for more complex logical forms, thus effectively dealing with the problem of spuriousness. We evaluate these techniques on two hard datasets: WikiTableQuestions (WTQ) and Cornell Natural Language Visual Reasoning (NLVR), and show that our training algorithm outperforms the previous best systems, on WTQ in a comparable setting, and on NLVR with significantly less supervision.

      Less More
    • NAACL 2019
      Phoebe Mulcaire, Jungo Kasai, Noah A. Smith

      We introduce a method to produce multilingual contextual word representations by training a single language model on text from multiple languages. Our method combines the advantages of contextual word representations with those of multilingual representation learning. We produce language models from dissimilar language pairs (English/Arabic and English/Chinese) and use them in dependency parsing, semantic role labeling, and named entity recognition, with comparisons to monolingual and non-contextual variants. Our results provide further support for polyglot learning, in which representations are shared across multiple languages.

      Less More
    • NAACL 2019
      Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew Peters, Noah A. Smith

      Contextual word representations derived from large-scale neural language models are successful across a diverse set of NLP tasks, suggesting that they encode useful and transferable features of language. To shed light on the linguistic knowledge they capture, we study the representations produced by several recent pretrained contextualizers (variants of ELMo, the OpenAI transformer LM, and BERT) with a suite of sixteen diverse probing tasks. We find that linear models trained on top of frozen contextual representations are competitive with state-of-the-art task-specific models in many cases, but fail on tasks requiring fine-grained linguistic knowledge (e.g., conjunct identification). To investigate the transferability of contextual word representations, we quantify differences in the transferability of individual layers within contextualizers, especially between RNNs and transformers. For instance, higher layers of RNNs are more task-specific, while transformer layers do not exhibit the same monotonic trend. In addition, to better understand what makes contextual word representations transferable, we compare language model pretraining with eleven supervised pretraining tasks. For any given task, pretraining on a closely related task yields better performance than language model pretraining (which is better on average) when the pretraining dataset is fixed. However, language model pretraining on more data gives the best results.

      Less More
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More