Menu
Viewing 24 papers in AllenNLP
Clear all
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More
    • EMNLP 2018
      Niket Tandon, Bhavana Dalvi Mishra, Joel Grus, Wen-tau Yih, Antoine Bosselut, Peter Clark

      Comprehending procedural text, e.g., a paragraph describing photosynthesis, requires modeling actions and the state changes they produce, so that questions about entities at different timepoints can be answered. Although several recent systems have shown impressive progress in this task, their predictions can be globally inconsistent or highly improbable. In this paper, we show how the predicted effects of actions in the context of a paragraph can be improved in two ways: (1) by incorporating global, commonsense constraints (e.g., a non-existent entity cannot be destroyed), and (2) by biasing reading with preferences from large-scale corpora (e.g., trees rarely move). Unlike earlier methods, we treat the problem as a neural structured prediction task, allowing hard and soft constraints to steer the model away from unlikely predictions. We show that the new model significantly outperforms earlier systems on a benchmark dataset for procedural text comprehension (+8% relative gain), and that it also avoids some of the nonsensical predictions that earlier systems make.

      Less More
    • EMNLP 2018
      Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi

      Given a partial description like"she opened the hood of the car,"humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.

      Less More
    • EMNLP 2018
      Hao Peng, Roy Schwartz, Sam Thomson, and Noah A. Smith

      Despite the tremendous empirical success of neural models in natural language processing, many of them lack the strong intuitions that accompany classical machine learning approaches. Recently, connections have been shown between convolutional neural networks (CNNs) and weighted finite state automata (WFSAs), leading to new interpretations and insights. In this work, we show that some recurrent neural networks also share this connection to WFSAs. We characterize this connection formally, defining rational recurrences to be recurrent hidden state update functions that can be written as the Forward calculation of a finite set of WFSAs. We show that several recent neural models use rational recurrences. Our analysis provides a fresh view of these models and facilitates devising new neural architectures that draw inspiration from WFSAs. We present one such model, which performs better than two recent baselines on language modeling and text classification. Our results demonstrate that transferring intuitions from classical models like WFSAs can be an effective approach to designing and understanding neural models.

      Less More
    • EMNLP 2018
      Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A. Smith

      We introduce the syntactic scaffold, an approach to incorporating syntactic information into semantic tasks. Syntactic scaffolds avoid expensive syntactic processing at runtime, only making use of a treebank during training, through a multitask objective. We improve over strong baselines on PropBank semantics, frame semantics, and coreference resolution, achieving competitive performance on all three tasks.

      Less More
    • EMNLP 2018
      Yang Liu, Matt Gardner, Mirella Lapata

      Many tasks in natural language processing involve comparing two sentences to compute some notion of relevance, entailment, or similarity. Typically this comparison is done either at the word level or at the sentence level, with no attempt to leverage the inherent structure of the sentence. When sentence structure is used for comparison, it is obtained during a non-differentiable pre-processing step, leading to propagation of errors. We introduce a model of structured alignments between sentences, showing how to compare two sentences by matching their latent structures. Using a structured attention mechanism, our model matches candidate spans in the first sentence to candidate spans in the second sentence, simultaneously discovering the tree structure of each sentence. Our model is fully differentiable and trained only on the matching objective. We evaluate this model on two tasks, natural entailment detection and answer sentence selection, and find that modeling latent tree structures results in superior performance. Analysis of the learned sentence structures shows they can reflect some syntactic phenomena.

      Less More
    • EMNLP 2018
      Gabriel Stanovsky, Mark Hopkins

      We propose Odd-Man-Out, a novel task which aims to test different properties of word representations. An Odd-Man-Out puzzle is composed of 5 (or more) words, and requires the system to choose the one which does not belong with the others. We show that this simple setup is capable of teasing out various properties of different popular lexical resources (like WordNet and pre-trained word embeddings), while being intuitive enough to annotate on a large scale. In addition, we propose a novel technique for training multi-prototype word representations, based on unsupervised clustering of ELMo embeddings, and show that it surpasses all other representations on all OddMan-Out collections.

      Less More
    • EMNLP 2018
      Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A. Smith, Jaime Carbonell

      For languages with no annotated resources, unsupervised transfer of natural language processing models such as named-entity recognition (NER) from resource-rich languages would be an appealing capability. However, differences in words and word order across languages make it a challenging problem. To improve mapping of lexical items across languages, we propose a method that finds translations based on bilingual word embeddings. To improve robustness to word order differences, we propose to use self-attention, which allows for a degree of flexibility with respect to word order. We demonstrate that these methods achieve state-of-the-art or competitive NER performance on commonly tested languages under a cross-lingual setting, with much lower resource requirements than past approaches. We also evaluate the challenges of applying these methods to Uyghur, a low resource language.

      Less More
    • EMNLP 2018
      Matthew Peters, Mark Neumann, Wen-tau Yih, and Luke Zettlemoyer

      Contextual word representations derived from pre-trained bidirectional language models (biLMs) have recently been shown to provide significant improvements to the state of the art for a wide range of NLP tasks. However, many questions remain as to how and why these models are so effective. In this paper, we present a detailed empirical study of how the choice of neural architecture (e.g. LSTM, CNN, or self attention) influences both end task accuracy and qualitative properties of the representations that are learned. We show there is a tradeoff between speed and accuracy, but all architectures learn high quality contextual representations that outperform word embeddings for four challenging NLP tasks. Additionally, all architectures learn representations that vary with network depth, from exclusively morphological based at the word embedding layer through local syntax based in the lower contextual layers to longer range semantics such coreference at the upper layers. Together, these results suggest that unsupervised biLMs, independent of architecture, are learning much more about the structure of language than previously appreciated.

      Less More
    • ACL 2018
      Maarten Sap, Hannah Rashkin, Emily Allaway, Noah A. Smith and Yejin Choi

      We investigate a new commonsense inference task: given an event described in a short free-form text (“X drinks coffee in the morning”), a system reasons about the likely intents (“X wants to stay awake”) and reactions (“X feels alert”) of the event’s participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people’s intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.

      Less More
    • ACL 2018
      Eunsol Choi, Omer Levy, Yejin Choi and Luke Zettlemoyer

      We introduce a new entity typing task: given a sentence with an entity mention, the goal is to predict a set of free-form phrases (e.g. skyscraper, songwriter, or criminal) that describe appropriate types for the target entity. This formulation allows us to use a new type of distant supervision at large scale: head words, which indicate the type of the noun phrases they appear in. We show that these ultra-fine types can be crowd-sourced, and introduce new evaluation sets that are much more diverse and fine-grained than existing benchmarks. We present a model that can predict open types, and is trained using a multitask objective that pools our new head-word supervision with prior supervision from entity linking. Experimental results demonstrate that our model is effective in predicting entity types at varying granularity; it achieves state of the art performance on an existing fine-grained entity typing benchmark, and sets baselines for our newly-introduced datasets.

      Less More
    • Award Best Paper Award
      ACL • RepL4NLP Workshop 2018
      Nelson F. Liu, Omer Levy, Roy Schwartz, Chenhao Tan, Noah A. Smith

      While recurrent neural networks have found success in a variety of natural language processing applications, they are general models of sequential data. We investigate how the properties of natural language data affect an LSTM's ability to learn a nonlinguistic task: recalling elements from its input. We find that models trained on natural language data are able to recall tokens from much longer sequences than models trained on non-language sequential data. Furthermore, we show that the LSTM learns to solve the memorization task by explicitly using a subset of its neurons to count timesteps in the input. We hypothesize that the patterns and structure in natural language data enable LSTMs to learn by providing approximate ways of reducing loss, but understanding the effect of different training data on the learnability of LSTMs remains an open question.

      Less More
    • ACL • NLP OSS Workshop 2018
      Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson Liu, Matthew Peters, Michael Schmitz, Luke Zettlemoyer

      This paper describes AllenNLP, a platform for research on deep learning methods in natural language understanding. AllenNLP is designed to support researchers who want to build novel language understanding models quickly and easily. It is built on top of PyTorch, allowing for dynamic computation graphs, and provides (1) a flexible data API that handles intelligent batching and padding, (2) high level abstractions for common operations in working with text, and (3) a modular and extensible experiment framework that makes doing good science easy. It also includes reference implementations of high quality approaches for both core semantic problems (e.g. semantic role labeling (Palmer et al., 2005)) and language understanding applications (e.g. machine comprehension (Rajpurkar et al., 2016)). AllenNLP is an ongoing open-source effort maintained by engineers and researchers at the Allen Institute for Artificial Intelligence.

      Less More
    • ACL 2018
      Christopher Clark and Matt Gardner

      We consider the problem of adapting neural paragraph-level question answering models to the case where entire documents are given as input. Our proposed solution trains models to produce well calibrated confidence scores for their results on individual paragraphs. We sample multiple paragraphs from the documents during training, and use a sharednormalization training objective that encourages the model to produce globally correct output. We combine this method with a stateof-the-art pipeline for training models on document QA data. Experiments demonstrate strong performance on several document QA datasets. Overall, we are able to achieve a score of 71.3 F1 on the web portion of TriviaQA, a large improvement from the 56.7 F1 of the previous best system.

      Less More
    • ACL 2018
      Vidur Joshi, Matthew Peters, and Mark Hopkins

      We revisit domain adaptation for parsers in the neural era. First we show that recent advances in word representations greatly diminish the need for domain adaptation when the target domain is syntactically similar to the source domain. As evidence, we train a parser on the Wall Street Jour- nal alone that achieves over 90% F1 on the Brown corpus. For more syntactically distant domains, we provide a simple way to adapt a parser using only dozens of partial annotations. For instance, we increase the percentage of error-free geometry-domain parses in a held-out set from 45% to 73% using approximately five dozen training examples. In the process, we demonstrate a new state-of-the-art single model result on the Wall Street Journal test set of 94.3%. This is an absolute increase of 1.7% over the previous state-of-the-art of 92.6%.

      Less More
    • Award Best Paper Award
      NAACL 2018
      Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer

      We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text corpus. We show that these representations can be easily added to existing models and significantly improve the state of the art across six challenging NLP problems, including question answering, textual entailment and sentiment analysis. We also present an analysis showing that exposing the deep internals of the pre-trained network is crucial, allowing downstream models to mix different types of semi-supervision signals.

      Less More
    • NAACL 2018
      Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Sam Bowman and Noah A. Smith

      Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et al., 2015) and 53% of MultiNLI (Williams et al., 2018). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.

      Less More
    • NAACL-HLT 2018 Dataset
      Dongyeop Kang, Waleed Ammar, Bhavana Dalvi Mishra, Madeleine van Zuylen, Sebastian Kohlmeier, Eduard Hovy, Roy Schwartz

      Peer reviewing is a central component in the scientific publishing process. We present the first public dataset of scientific peer reviews available for research pur- poses (PeerRead v1), providing an opportunity to study this important artifact. The dataset consists of 14.7K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR. The dataset also includes 10.7K textual peer reviews written by experts for a subset of the papers. We describe the data collection process and report interesting observed phenomena in the peer reviews. We also propose two novel NLP tasks based on this dataset and provide simple baseline models. In the first task, we show that simple models can predict whether a paper is accepted with up to 21% error reduction compared to the majority baseline. In the second task, we predict the numerical scores of review aspects and show that simple models can outperform the mean baseline for aspects with high variance such as 'originality' and 'impact'.

      Less More
    • ACL 2018
      Roy Schwartz, Sam Thomson and Noah A. Smith

      Recurrent and convolutional neural networks comprise two distinct families of models that have proven to be useful for encoding natural language utterances. In this paper we present SoPa, a new model that aims to bridge these two approaches. SoPa combines neural representation learning with weighted finite-state automata (WFSAs) to learn a soft version of traditional surface patterns. We show that SoPa is an extension of a one-layer CNN, and that such CNNs are equivalent to a restricted version of SoPa, and accordingly, to a restricted form of WFSA. Empirically, on three text classification tasks, SoPa is comparable or better than both a BiLSTM (RNN) baseline and a CNN baseline, and is particularly useful in small data settings.

      Less More
    • ACL 2017
      Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell Power

      Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive representations is trained on relatively little labeled data. In this paper, we demonstrate a general semi-supervised approach for adding pre-trained context embeddings from bidirectional language models to NLP systems and apply it to sequence labeling tasks. We evaluate our model on two standard datasets for named entity recognition (NER) and chunking, and in both cases achieve state of the art results, surpassing previous systems that use other forms of transfer or joint learning with additional labeled data and task specific gazetteers.

      Less More
    • ACL 2017
      Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer

      We present an approach to rapidly and easily build natural language interfaces to databases for new domains, whose performance improves over time based on user feedback, and requires minimal intervention. To achieve this, we adapt neural sequence models to map utterances directly to SQL with its full expressivity, bypassing any intermediate meaning representations. These models are immediately deployed online to solicit feedback from real users to flag incorrect queries. Finally, the popularity of SQL facilitates gathering annotations for incorrect predictions using the crowd, which is directly used to improve our models. This complete feedback loop, without intermediate representations or database specific engineering, opens up new ways of building high quality semantic parsers. Experiments suggest that this approach can be deployed quickly for any new target domain, as we show by learning a semantic parser for an online academic database from scratch.

      Less More
    • EMNLP 2017
      Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer

      We introduce the first end-to-end coreference resolution model and show that it significantly outperforms all previous work without using a syntactic parser or handengineered mention detector. The key idea is to directly consider all spans in a document as potential mentions and learn distributions over possible antecedents for each. The model computes span embeddings that combine context-dependent boundary representations with a headfinding attention mechanism. It is trained to maximize the marginal likelihood of gold antecedent spans from coreference clusters and is factored to enable aggressive pruning of potential mentions. Experiments demonstrate state-of-the-art performance, with a gain of 1.5 F1 on the OntoNotes benchmark and by 3.1 F1 using a 5-model ensemble, despite the fact that this is the first approach to be successfully trained with no external resources.

      Less More
    • EMNLP 2017
      Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gardner

      We present a new semantic parsing model for answering compositional questions on semi-structured Wikipedia tables. Our parser is an encoder-decoder neural network with two key technical innovations: (1) a grammar for the decoder that only generates well-typed logical forms; and (2) an entity embedding and linking module that identifies entity mentions while generalizing across tables. We also introduce a novel method for training our neural model with question-answer supervision. On the WIKITABLEQUESTIONS data set, our parser achieves a state-of-theart accuracy of 43.3% for a single model and 45.9% for a 5-model ensemble, improving on the best prior score of 38.7% set by a 15-model ensemble. These results suggest that type constraints and entity linking are valuable components to incorporate in neural semantic parsers.

      Less More
    • ACL 2017
      Luheng He, Kenton Lee, Mike Lewis, Luke S. Zettlemoyer

      We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding, while observing a number of recent best practices for initialization and regularization. Our 8-layer ensemble model achieves 83.2 F1 on the CoNLL 2005 test set and 83.4 F1 on CoNLL 2012, roughly a 10% relative error reduction over the previous state of the art. Extensive empirical analysis of these gains show that (1) deep models excel at recovering long-distance dependencies but can still make surprisingly obvious errors, and (2) that there is still room for syntactic parsers to improve these results.

      Less More