Menu
Viewing 7 papers from 2014 in Aristo
Clear all
    • EACL 2014
      Yuen-Hsien Tseng, Lung-Hao Lee, Shu-Yen Lin, Bo-Shun Liao, Mei-Jun Liu, Hsin-Hsi Chen, Oren Etzioni, and Anthony Fader

      This study presents the Chinese Open Relation Extraction (CORE) system that is able to extract entity-relation triples from Chinese free texts based on a series of NLP techniques, i.e., word segmentation, POS tagging, syntactic parsing, and extraction rules. We employ the proposed CORE techniques to extract more than 13 million entity-relations for an open domain question answering application. To our best knowledge, CORE is the first Chinese Open IE system for knowledge acquisition.

      Less More
    • ACL • Workshop on Semantic Parsing 2014
      Xuchen Yao, Jonathan Berant, and Benjamin Van Durme

      We contrast two seemingly distinct approaches to the task of question answering (QA) using Freebase: one based on information extraction techniques, the other on semantic parsing. Results over the same test-set were collected from two state-ofthe-art, open-source systems, then analyzed in consultation with those systems' creators. We conclude that the differences between these technologies, both in task performance, and in how they get there, is not significant. This suggests that the semantic parsing community should target answering more compositional open-domain questions that are beyond the reach of more direct information extraction methods.

      Less More
    • KDD 2014
      Anthony Fader, Luke Zettlemoyer, and Oren Etzioni

      We consider the problem of open-domain question answering (Open QA) over massive knowledge bases (KBs). Existing approaches use either manually curated KBs like Freebase or KBs automatically extracted from unstructured text. In this paper, we present oqa, the first approach to leverage both curated and extracted KBs. A key technical challenge is designing systems that are robust to the high variability in both natural language questions and massive KBs. oqa achieves robustness by decomposing the full Open QA problem into smaller sub-problems including question paraphrasing and query reformulation. oqa solves these sub-problems by mining millions of rules from an unlabeled question corpus and across multiple KBs. oqa then learns to integrate these rules by performing discriminative training on question-answer pairs using a latentvariable structured perceptron algorithm. We evaluate oqa on three benchmark question sets and demonstrate that it achieves up to twice the precision and recall of a state-ofthe-art Open QA system.

      Less More
    • Award Best Paper Award
      EMNLP 2014
      Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Brad Huang, Christopher D. Manning, Abby Vander Linden, Brittany Harding, and Peter Clark

      Machine reading calls for programs that read and understand text, but most current work only attempts to extract facts from redundant web-scale corpora. In this paper, we focus on a new reading comprehension task that requires complex reasoning over a single document. The input is a paragraph describing a biological process, and the goal is to answer questions that require an understanding of the relations between entities and events in the process. To answer the questions, we first predict a rich structure representing the process in the paragraph. Then, we map the question to a formal query, which is executed against the predicted structure. We demonstrate that answering questions via predicted structures substantially improves accuracy over baselines that use shallower representations.

      Less More
    • Award Best Paper Award
      AKBC 2014
      Peter Clark, Niranjan Balasubramanian, Sumithra Bhakthavatsalam, Kevin Humphreys, Jesse Kinkead, Ashish Sabharwal, and Oyvind Tafjord

      While there has been tremendous progress in automatic database population in recent years, most of human knowledge does not naturally fit into a database form. For example, knowledge that "metal objects can conduct electricity" or "animals grow fur to help them stay warm" requires a substantially different approach to both acquisition and representation. This kind of knowledge is important because it can support inference e.g., (with some associated confidence) if an object is made of metal then it can conduct electricity; if an animal grows fur then it will stay warm. If we want our AI systems to understand and reason about the world, then acquisition of this kind of inferential knowledge is essential. In this paper, we describe our work on automatically constructing an inferential knowledge base, and applying it to a question-answering task. Rather than trying to induce rules from examples, or enter them by hand, our goal is to acquire much of this knowledge directly from text. Our premise is that much inferential knowledge is written down explicitly, in particular in textbooks, and can be extracted with reasonable reliability. We describe several challenges that this approach poses, and innovative, partial solutions that we have developed. Finally we speculate on the longer-term evolution of this work.

      Less More
    • International Conference on Principles and Practice of Constraint Programming 2014
      Ashish Sabharwal and Horst Samulowitz

      Novel search space splitting techniques have recently been successfully exploited to paralleliz Constraint Programming and Mixed Integer Programming solvers. We first show how universal hashing can be used to extend one such interesting approach to a generalized setting that goes beyond discrepancy-based search, while still retaining strong theoretical guarantees. We then explain that such static or explicit splitting approaches are not as effective in the context of parallel combinatorial search with intensive knowledge acquisition and sharing such as parallel SAT, where implicit splitting through clause sharing appears to dominate. Furthermore, we show that in a parallel setting there exists a surprising tradeoff between the well-known communication cost for knowledge sharing across multiple compute nodes and the so far neglected cost incurred by the computational load per node. We provide experimental evidence that one can successfully exploit this tradeoff and achieve reasonable speedups in parallel SAT solving beyond 16 cores.

      Less More
    • ACL 2014
      Peter Jansen, Mihai Surdeanu, and Peter Clark

      We propose a robust answer reranking model for non-factoid questions that integrates lexical semantics with discourse information, driven by two representations of discourse: a shallow representation centered around discourse markers, and a deep one based on Rhetorical Structure Theory. We evaluate the proposed model on two corpora from different genres and domains: one from Yahoo! Answers and one from the biology domain, and two types of non-factoid questions: manner and reason. We experimentally demonstrate that the discourse structure of nonfactoid answers provides information that is complementary to lexical semantic similarity between question and answer, improving performance up to 24% (relative) over a state-of-the-art model that exploits lexical semantic similarity alone. We further demonstrate excellent domain transfer of discourse information, suggesting these discourse features have general utility to non-factoid question answering.

      Less More