Viewing 5 papers from 2019 in Aristo
Clear all
    • NAACL-HLT 2019
      Xinya Du, Bhavana Dalvi Mishra, Niket Tandon, Antoine Bosselut, Wen-tau Yih, Peter Clark, Claire Cardie

      Our goal is procedural text comprehension, namely tracking how the properties of entities (e.g., their location) change with time given a procedural text (e.g., a paragraph about photosynthesis, a recipe). This task is challenging as the world is changing throughout the text, and despite recent advances, current systems still struggle with this task. Our approach is to leverage the fact that, for many procedural texts, multiple independent descriptions are readily available, and that predictions from them should be consistent (label consistency). We present a new learning framework that leverages label consistency during training, allowing consistency bias to be built into the model. Evaluation on a standard benchmark dataset for procedural text, ProPara (Dalvi et al., 2018), shows that our approach significantly improves prediction performance (F1) over prior state-of-the-art systems.

      Less More
    • NAACL 2019
      Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, Niranjan Balasubramanian

      Question Answering (QA) naturally reduces to an entailment problem, namely, verifying whether some text entails the answer to a question. However, for multi-hop QA tasks, which require reasoning with multiple sentences, it remains unclear how best to utilize entailment models pre-trained on large scale datasets such as SNLI, which are based on sentence pairs.

      We introduce Multee, a general architecture that can effectively use entailment models for multi-hop QA tasks. Multee uses (i) a local module that helps locate important sentences, thereby avoiding distracting information, and (ii) a global module that aggregates information by effectively incorporating importance weights. Importantly, we show that both modules can use entailment functions pre-trained on large scale NLI datasets. We evaluate performance on MultiRC and OpenBookQA, two multihop QA datasets. When using an entailment function pre-trained on NLI datasets, Multee outperforms QA models trained only on the target QA datasets and the OpenAI transformer models.

      Less More
    • AAAI 2019
      Arindam Mitra, Peter Clark, Oyvind Tafjord, Chitta Baral

      While in recent years machine learning (ML) based approaches have been the popular approach in developing end-to-end question answering systems, such systems often struggle when additional knowledge is needed to correctly answer the questions. Proposed alternatives involve translating the question and the natural language text to a logical representation and then use logical reasoning. However, this alternative falters when the size of the text gets bigger. To address this we propose an approach that does logical reasoning over premises written in natural language text. The proposed method uses recent features of Answer Set Programming (ASP) to call external NLP modules (which may be based on ML) which perform simple textual entailment. To test our approach we develop a corpus based on the life cycle questions and showed that Our system achieves up to 18% performance gain when compared to standard MCQ solvers.

      Less More
    • AAAI 2019
      Oyvind Tafjord, Peter Clark, Matt Gardner, Wen-tau Yih, Ashish Sabharwal

      Many natural language questions require recognizing and reasoning with qualitative relationships (e.g., in science, economics, and medicine), but are challenging to answer with corpus-based methods. Qualitative modeling provides tools that support such reasoning, but the semantic parsing task of mapping questions into those models has formidable challenges. We present QuaRel, a dataset of diverse story questions involving qualitative relationships that characterize these challenges, and techniques that begin to address them. The dataset has 2771 questions relating 19 different types of quantities. For example, "Jenny observes that the robot vacuum cleaner moves slower on the living room carpet than on the bedroom carpet. Which carpet has more friction?" We contribute (1) a simple and flexible conceptual framework for representing these kinds of questions; (2) the QuaRel dataset, including logical forms, exemplifying the parsing challenges; and (3) two novel models for this task, built as extensions of type-constrained semantic parsing. The first of these models (called QuaSP+) significantly outperforms off-the-shelf tools on QuaRel. The second (QuaSP+Zero) demonstrates zero-shot capability, i.e., the ability to handle new qualitative relationships without requiring additional training data, something not possible with previous models. This work thus makes inroads into answering complex, qualitative questions that require reasoning, and scaling to new relationships at low cost. The dataset and models are available at this http URL.

      Less More
    • arXiv 2019
      Daniel Khashabi, Erfan Sadeqi Azer, Tushar Khot, Ashish Sabharwal, Dan Roth

      Recent systems for natural language understanding are strong at overcoming linguistic variability for lookup style reasoning. Yet, their accuracy drops dramatically as the number of reasoning steps increases. We present the first formal framework to study such empirical observations, addressing the ambiguity, redundancy, incompleteness, and inaccuracy that the use of language introduces when representing a hidden conceptual space. Our formal model uses two interrelated spaces: a conceptual "meaning space" that is unambiguous and complete but hidden, and a linguistic "symbol space" that captures a noisy grounding of the meaning space in the symbols or words of a language. We apply this framework to study the "connectivity problem" in undirected graphs -- a core reasoning problem that forms the basis for more complex multi-hop reasoning. We show that it is indeed possible to construct a high-quality algorithm for detecting connectivity in the (latent) meaning graph, based on an observed noisy symbol graph, as long as the noise is below our quantified noise level and only a few hops are needed. On the other hand, we also prove an impossibility result: if a query requires a large number (specifically, logarithmic in the size of the meaning graph) of hops, no reasoning system operating over the symbol graph is likely to recover any useful property of the meaning graph. This highlights a fundamental barrier for a class of reasoning problems and systems, and suggests the need to limit the distance between the two spaces, rather than investing in multi-hop reasoning with "many" hops.

      Less More