Viewing 2 papers from 2014 in Euclid
Clear all
    • EMNLP 2014
      Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman

      This paper presents a novel approach to learning to solve simple arithmetic word problems. Our system, ARIS, analyzes each of the sentences in the problem statement to identify the relevant variables and their values. ARIS then maps this information into an equation that represents the problem, and enables its (trivial) solution as shown in Figure 1. The paper analyzes the arithmetic-word problems "genre", identifying seven categories of verbs used in such problems. ARIS learns to categorize verbs with 81.2% accuracy, and is able to solve 77.7% of the problems in a corpus of standard primary school test questions. We report the first learning results on this task without reliance on predefined templates and make our data publicly available.

      Less More
    • AAAI 2014
      Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and Oren Etzioni

      Automatically solving geometry questions is a longstanding AI problem. A geometry question typically includes a textual description accompanied by a diagram. The first step in solving geometry questions is diagram understanding, which consists of identifying visual elements in the diagram, their locations, their geometric properties, and aligning them to corresponding textual descriptions. In this paper, we present a method for diagram understanding that identifies visual elements in a diagram while maximizing agreement between textual and visual data. We show that the method's objective function is submodular; thus we are able to introduce an efficient method for diagram understanding that is close to optimal. To empirically evaluate our method, we compile a new dataset of geometry questions (textual descriptions and diagrams) and compare with baselines that utilize standard vision techniques. Our experimental evaluation shows an F1 boost of more than 17% in identifying visual elements and 25% in aligning visual elements with their textual descriptions.

      Less More