Viewing 2 papers from 2014 in PRIOR
Clear all
    • CVPR 2014
      Santosh K. Divvala, Ali Farhadi, and Carlos Guestrin

      Recognition is graduating from labs to real-world applications. While it is encouraging to see its potential being tapped, it brings forth a fundamental challenge to the vision researcher: scalability. How can we learn a model for any concept that exhaustively covers all its appearance variations, while requiring minimal or no human supervision for compiling the vocabulary of visual variance, gathering the training images and annotations, and learning the models? In this paper, we introduce a fully-automated approach for learning extensive models for a wide range of variations (e.g. actions, interactions, attributes and beyond) within any concept. Our approach leverages vast resources of online books to discover the vocabulary of variance, and intertwines the data collection and modeling steps to alleviate the need for explicit human supervision in training the models. Our approach organizes the visual knowledge about a concept in a convenient and useful way, enabling a variety of applications across vision and NLP. Our online system has been queried by users to learn models for several interesting concepts including breakfast, Gandhi, beautiful, etc. To date, our system has models available for over 50,000 variations within 150 concepts, and has annotated more than 10 million images with bounding boxes.

      Less More
    • AAAI 2014
      Min Joon Seo, Hannaneh Hajishirzi, Ali Farhadi, and Oren Etzioni

      Automatically solving geometry questions is a longstanding AI problem. A geometry question typically includes a textual description accompanied by a diagram. The first step in solving geometry questions is diagram understanding, which consists of identifying visual elements in the diagram, their locations, their geometric properties, and aligning them to corresponding textual descriptions. In this paper, we present a method for diagram understanding that identifies visual elements in a diagram while maximizing agreement between textual and visual data. We show that the method's objective function is submodular; thus we are able to introduce an efficient method for diagram understanding that is close to optimal. To empirically evaluate our method, we compile a new dataset of geometry questions (textual descriptions and diagrams) and compare with baselines that utilize standard vision techniques. Our experimental evaluation shows an F1 boost of more than 17% in identifying visual elements and 25% in aligning visual elements with their textual descriptions.

      Less More