Menu
Viewing 9 papers from 2019 in PRIOR
Clear all
    • CVPR 2019
      Kenneth Marino, Mohammad Rastegari, Ali Farhadi, Roozbeh Mottaghi

      Visual Question Answering (VQA) in its ideal form lets us study reasoning in the joint space of vision and language and serves as a proxy for the AI task of scene understanding. However, most VQA benchmarks to date are focused on questions such as simple counting, visual attributes, and object detection that do not require reasoning or knowledge beyond what is in the image. In this paper, we address the task of knowledge-based visual question answering and provide a benchmark, called OK-VQA, where the image content is not sufficient to answer the questions, encouraging methods that rely on external knowledge resources. Our new dataset includes more than 14,000 questions that require external knowledge to answer. We show that the performance of the state-of-the-art VQA models degrades drastically in this new setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult, and large compared to previous knowledge-based VQA datasets. We hope that this dataset enables researchers to open up new avenues for research in this domain.

      Less More
    • CVPR 2019
      Sachin Mehta, Mohammad Rastegari, Linda Shapiro, Hannaneh Hajishirzi

      We introduce a light-weight, power efficient, and general purpose convolutional neural network, ESPNetv2 , for modeling visual and sequential data. Our network uses group point-wise and depth-wise dilated separable convolutions to learn representations from a large effective receptive field with fewer FLOPs and parameters. The performance of our network is evaluated on three different tasks: (1) object classification, (2) semantic segmentation, and (3) language modeling. Experiments on these tasks, including image classification on the ImageNet and language modeling on the PenTree bank dataset, demonstrate the superior performance of our method over the state-of-the-art methods. Our network has better generalization properties than ShuffleNetv2 when tested on the MSCOCO multi-object classification task and the Cityscapes urban scene semantic segmentation task. Our experiments show that ESPNetv2 is much more power efficient than existing state-of-the-art efficient methods including ShuffleNets and MobileNets. Our code is open-source and available at https://github.com/sacmehta/ESPNetv2.

      Less More
    • CVPR 2019
      Mohammad Mahdi Derakhshani, Saeed Masoudnia, Amir Hossein Shaker, Omid Mersa, Mohammad Amin Sadeghi, Mohammad Rastegari, Babak N. Araabi

      We present a simple and effective learning technique that significantly improves mAP of YOLO object detectors without compromising their speed. During network training, we carefully feed in localization information. We excite certain activations in order to help the network learn to better localize. In the later stages of training, we gradually reduce our assisted excitation to zero. We reached a new state-of-the-art in the speed-accuracy trade-off. Our technique improves the mAP of YOLOv2 by 3.8% and mAP of YOLOv3 by 2.2% on MSCOCO dataset. This technique is inspired from curriculum learning. It is simple and effective and it is applicable to most single-stage object detectors.

      Less More
    • CVPR 2019
      Unnat Jain, Luca Weihs, Eric Kolve, Mohammad Rastegari, Svetlana Lazebnik, Ali Farhadi, Alexander Schwing, Aniruddha Kembhavi

      Collaboration is a necessary skill to perform tasks that are beyond one agent's capabilities. Addressed extensively in both conventional and modern AI, multi-agent collaboration has often been studied in the context of simple grid worlds. We argue that there are inherently visual aspects to collaboration which should be studied in visually rich environments. A key element in collaboration is communication that can be either explicit, through messages, or implicit, through perception of the other agents and the visual world. Learning to collaborate in a visual environment entails learning (1) to perform the task, (2) when and what to communicate, and (3) how to act based on these communications and the perception of the visual world. In this paper we study the problem of learning to collaborate directly from pixels in AI2-THOR and demonstrate the benefits of explicit and implicit modes of communication to perform visual tasks.

      Less More
    • CVPR 2019
      Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan Loddon Yuille, Mohammad Rastegari

      Scale variation has been a challenge from traditional to modern approaches in computer vision. Most solutions to scale issues have similar theme: a set of intuitive and manually designed policies that are generic and fixed (e.g. SIFT or feature pyramid). We argue that the scale policy should be learned from data. In this paper, we introduce ELASTIC, a simple, efficient and yet very effective approach to learn instance-specific scale policy from data. We formulate the scaling policy as a non-linear function inside the network’s structure that (a) is learned from data, (b) is instance specific, (c) does not add extra computation, and (d) can be applied on any network architecture. We applied ELASTIC to several state-of-the-art network architectures and showed consistent improvement without extra (sometimes even lower) computation on ImageNet classification, MSCOCO multi-label classification, and PASCAL VOC semantic segmentation. Our results show major improvement for images with scale challenges e.g. images with several small objects or objects with large scale variations. Our code and models will be publicly available soon.

      Less More
    • CVPR 2019
      Yao-Hung Tsai, Santosh Divvala, Louis-Philippe Morency, Ruslan Salakhutdinov and Ali Farhadi

      Visual relationship reasoning is a crucial yet challenging task for understanding rich interactions across visual concepts. For example, a relationship {man, open, door} involves a complex relation {open} between concrete entities {man, door}. While much of the existing work has studied this problem in the context of still images, understanding visual relationships in videos has received limited attention. Due to their temporal nature, videos enable us to model and reason about a more comprehensive set of visual relationships, such as those requiring multiple (temporal) observations (e.g., {man, lift up, box} vs. {man, put down, box}), as well as relationships that are often correlated through time (e.g., {woman, pay, money} followed by {woman, buy, coffee}). In this paper, we construct a Conditional Random Field on a fully-connected spatio-temporal graph that exploits the statistical dependency between relational entities spatially and temporally. We introduce a novel gated energy function parametrization that learns adaptive relations conditioned on visual observations. Our model optimization is computationally efficient, and its space computation complexity is significantly amortized through our proposed parameterization. Experimental results on benchmark video datasets (ImageNet Video and Charades) demonstrate state-of-the-art performance across three standard relationship reasoning tasks: Detection, Tagging, and Recognition.

      Less More
    • CVPR 2019
      Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, Roozbeh Mottaghi

      Learning is an inherently continuous phenomenon. When humans learn a new task there is no explicit distinction between training and inference. After we learn a task, we keep learning about it while performing the task. What we learn and how we learn it varies during different stages of learning. Learning how to learn and adapt is a key property that enables us to generalize effortlessly to new settings. This is in contrast with conventional settings in machine learning where a trained model is frozen during inference. In this paper we study the problem of learning to learn at both training and inference time in the context of visual navigation. A fundamental challenge in navigation is generalization to unseen scenes. In this paper we propose a self-adaptive visual navigation method (SAVN) which learns to adapt to new environments without any explicit supervision. Our solution is a meta-reinforcement learning approach where an agent learns a self-supervised interaction loss that encourages effective navigation. Our experiments, performed in the AI2-THOR framework, show major improvements in both success rate and SPL for visual navigation in novel scenes.

      Less More
    • CVPR 2019
      Rowan Zellers, Yonatan Bisk, Ali Farhadi, Yejin Choi

      Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people’s actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today’s vision systems, requiring higher-order cognition and commonsense reasoning about the world. In this paper, we formalize this task as Visual Commonsense Reasoning. In addition to answering challenging visual questions expressed in natural language, a model must provide a rationale explaining why its answer is true. We introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe to generating non-trivial and high-quality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. To move towards cognition-level image understanding, we present a new reasoning engine, called Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-theart models struggle (∼45%). Our R2C helps narrow this gap (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.

      Less More
    • ICLR 2019
      Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, Roozbeh Mottaghi

      How do humans navigate to target objects in novel scenes? Do we use the semantic/functional priors we have built over years to efficiently search and navigate? For example, to search for mugs, we search cabinets near the coffee machine and for fruits we try the fridge. In this work, we focus on incorporating semantic priors in the task of semantic navigation. We propose to use Graph Convolutional Networks for incorporating the prior knowledge into a deep reinforcement learning framework. The agent uses the features from the knowledge graph to predict the actions. For evaluation, we use the AI2-THOR framework. Our experiments show how semantic knowledge improves performance significantly. More importantly, we show improvement in generalization to unseen scenes and/or objects. The supplementary video can be accessed at the following link: https://youtu.be/otKjuO805dE

      Less More