Papers

Learn more about AI2's Lasting Impact Award
Aristo
All Years
Viewing 11-20 of 134 papers
  • Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge

    Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, Jonathan BerantNeurIPS • Spotlight Presentation2020
    To what extent can a neural network systematically reason over symbolic facts? Evidence suggests that large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control. Recently, it has been shown that Transformer-based models succeed in consistent reasoning over explicit symbolic facts, under a “closed-world" assumption. However, in an open-domain setup, it is desirable to tap into the vast reservoir of implicit knowledge already encoded in the parameters of pre-trained LMs. In this work, we provide a first demonstration that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements. To do this, we describe a procedure for automatically generating datasets that teach a model new reasoning skills, and demonstrate that models learn to effectively perform inference which involves implicit taxonomic and world knowledge, chaining and counting. Finally, we show that “teaching” the models to reason generalizes beyond the training distribution: they successfully compose the usage of multiple reasoning skills in single examples. Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
  • From ‘F’ to ‘A’ on the N.Y. Regents Science Exams: An Overview of the Aristo Project

    Peter Clark, Oren Etzioni, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richardson, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, Niket Tandon, Sumithra Bhakthavatsalam, Dirk Groeneveld, Michal Guerquin, Michael SchmitzAI Magazine 41 (4), Winter2020
    AI has achieved remarkable mastery over games such as Chess, Go, and Poker, and even Jeopardy!, but the rich variety of standardized exams has remained a landmark challenge. Even in 2016, the best AI system achieved merely 59.3% on an 8th Grade science exam challenge (Schoenick et al., 2016). This paper reports unprecedented success on the Grade 8 New York Regents Science Exam, where for the first time a system scores more than 90% on the exam’s non-diagram, multiple choice (NDMC) questions. In addition, our Aristo system, building upon the success of recent language models, exceeded 83% on the corresponding Grade 12 Science Exam NDMC questions. The results, on unseen test questions, are robust across different test years and different variations of this kind of test. They demonstrate that modern NLP methods can result in mastery on this task. While not a full solution to general question-answering (the questions are multiple choice, and the domain is restricted to 8th Grade science), it represents a significant milestone for the field.
  • Neural Natural Language Inference Models Partially Embed Theories of Lexical Entailment and Negation

    Atticus Geiger, Kyle Richardson, Christopher PottsEMNLP • BlackboxNLP Workshop 2020
    We address whether neural models for Natural Language Inference (NLI) can learn the compositional interactions between lexical entailment and negation, using four methods: the behavioral evaluation methods of (1) challenge test sets and (2) systematic generalization tasks, and the structural evaluation methods of (3) probes and (4) interventions. To facilitate this holistic evaluation, we present Monotonicity NLI (MoNLI), a new naturalistic dataset focused on lexical entailment and negation. In our behavioral evaluations, we find that models trained on general-purpose NLI datasets fail systematically on MoNLI examples containing negation, but that MoNLI fine-tuning addresses this failure. In our structural evaluations, we look for evidence that our top-performing BERT-based model has learned to implement the monotonicity algorithm behind MoNLI. Probes yield evidence consistent with this conclusion, and our intervention experiments bolster this, showing that the causal dynamics of the model mirror the causal dynamics of this algorithm on subsets of MoNLI. This suggests that the BERT model at least partially embeds a theory of lexical entailment and negation at an algorithmic level.
  • A Dataset for Tracking Entities in Open Domain Procedural Text

    Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi Mishra, Dheeraj Rajagopal, Peter Clark, Michal Guerquin, Kyle Richardson, Eduard HovyEMNLP2020
    We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky, opaque, and clear. Previous formulations of this task provide the text and entities involved, and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples (entity, attribute, before-state, after-state) for each step, where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI1, a high-quality (91.5% coverage as judged by humans and completely vetted), and largescale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural realworld paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.
  • IIRC: A Dataset of Incomplete Information Reading Comprehension Questions

    James Ferguson, Matt Gardner. Hannaneh Hajishirzi, Tushar Khot, Pradeep DasigiEMNLP2020
    Humans often have to read multiple documents to address their information needs. However, most existing reading comprehension (RC) tasks only focus on questions for which the contexts provide all the information required to answer them, thus not evaluating a system’s performance at identifying a potential lack of sufficient information and locating sources for that information. To fill this gap, we present a dataset, IIRC, with more than 13K questions over paragraphs from English Wikipedia that provide only partial information to answer them, with the missing information occurring in one or more linked documents. The questions were written by crowd workers who did not have access to any of the linked documents, leading to questions that have little lexical overlap with the contexts where the answers appear. This process also gave many questions without answers, and those that require discrete reasoning, increasing the difficulty of the task. We follow recent modeling work on various reading comprehension datasets to construct a baseline model for this dataset, finding that it achieves 31.1% F1 on this task, while estimated human performance is 88.4%. The dataset, code for the baseline system, and a leaderboard can be found at https://allennlp.org/iirc.
  • OCNLI: Original Chinese Natural Language Inference

    H. Hu, Kyle Richardson, Liang Xu, L. Li, Sandra Kübler, L. MossFindings of EMNLP2020
    Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g., SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world's languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.
  • UnQovering Stereotyping Biases via Underspecified Questions

    Tao Li, Tushar Khot, Daniel Khashabi, Ashish Sabharwal, Vivek SrikumarFindings of EMNLP2020
    While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.
  • A Simple Yet Strong Pipeline for HotpotQA

    Dirk Groeneveld, Tushar Khot, Mausam, Ashish SabharwalEMNLP2020
    State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multihop datasets really justify this added design complexity? Our results suggest that the answer may be no, because even our simple pipeline based on BERT, named QUARK, performs surprisingly well. Specifically, on HotpotQA, QUARK outperforms these models on both question answering and support identification (and achieves performance very close to a RoBERTa model). Our pipeline has three steps: 1) use BERT to identify potentially relevant sentences independently of each other; 2) feed the set of selected sentences as context into a standard BERT span prediction model to choose an answer; and 3) use the sentence selection model, now with the chosen answer, to produce supporting sentences. The strong performance of QUARK resurfaces the importance of carefully exploring simple model designs before using popular benchmarks to justify the value of complex techniques.
  • Is Multihop QA in DiRe Condition? Measuring and Reducing Disconnected Reasoning

    H. Trivedi, N. Balasubramanian, Tushar Khot, A. SabharwalEMNLP2020
    Has there been real progress in multi-hop question-answering? Models often exploit dataset artifacts to produce correct answers, without connecting information across multiple supporting facts. This limits our ability to measure true progress and defeats the purpose of building multihop QA datasets. We make three contributions towards addressing this. First, we formalize such undesirable behavior as disconnected reasoning across subsets of supporting facts. This allows developing a model-agnostic probe for measuring how much any model can cheat via disconnected reasoning. Second, using a notion of contrastive support sufficiency, we introduce an automatic transformation of existing datasets that reduces the amount of disconnected reasoning. Third, our experiments demonstrate that there hasn't been much progress in multifact reasoning. For a recent large-scale model (XLNet), we show that only 18% of its answer score is obtained through multifact reasoning, roughly the same as that of a simpler RNN baseline. Our transformation shows a substantial reduction in disconnected reasoning (nearly 19 points in answer F1). It is complementary to adversarial approaches, yielding further reductions in conjunction.
  • Learning to Explain: Datasets and Models for Identifying Valid Reasoning Chains in Multihop Question-Answering.

    Harsh Jhamtani, P. ClarkEMNLP2020
    Despite the rapid progress in multihop question-answering (QA), models still have trouble explaining why an answer is correct, with limited explanation training data available to learn from. To address this, we introduce three explanation datasets in which explanations formed from corpus facts are annotated. Our first dataset, eQASC, contains over 98K explanation annotations for the multihop question answering dataset QASC, and is the first that annotates multiple candidate explanations for each answer. The second dataset eQASC-perturbed is constructed by crowd-sourcing perturbations (while preserving their validity) of a subset of explanations in QASC, to test consistency and generalization of explanation prediction models. The third dataset eOBQA is constructed by adding explanation annotations to the OBQA dataset to test generalization of models trained on eQASC. We show that this data can be used to significantly improve explanation quality (+14% absolute F1 over a strong retrieval baseline) using a BERT-based classifier, but still behind the upper bound, offering a new challenge for future research. We also explore a delexicalized chain representation in which repeated noun phrases are replaced by variables, thus turning them into generalized reasoning chains (for example: ”X is a Y” AND ”Y has Z” IMPLIES ”X has Z”). We find that generalized chains maintain performance while also being more robust to certain perturbations.
Aristo
All Years