Skip to main content ->
Ai2

Research - Papers

Explore a selection of our published work on a variety of key research challenges in AI.

Filter papers

SODA: Million-scale Dialogue Distillation with Social Commonsense Contextualization

Hyunwoo KimJack HesselLiwei JiangYejin Choi
2023
EMNLP

We present SODA : the first publicly available, million-scale high-quality social dialogue dataset. Using SODA , we train COSMO : a generalizable conversation agent outperforming previous… 

TaskWeb: Selecting Better Source Tasks for Multi-task NLP

Joongwon KimAkari AsaiGabriel IlharcoHannaneh Hajishirzi
2023
EMNLP

Recent work in NLP has shown promising results in training models on large amounts of tasks to achieve better generalization. However, it is not well-understood how tasks are related, and how… 

Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements

Jiacheng LiuWenya WangDianzhuo WangHanna Hajishirzi
2023
EMNLP

Despite the much discussed capabilities of today's language models, they are still prone to silly and unexpected commonsense failures. We consider a retrospective verification approach that reflects… 

We're Afraid Language Models Aren't Modeling Ambiguity

Alisa LiuZhaofeng WuJulian MichaelYejin Choi
2023
EMNLP

Ambiguity is an intrinsic feature of natural language. Managing ambiguity is a key part of human language understanding, allowing us to anticipate misunderstanding as communicators and revise our… 

What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations

Kavel RaoLiwei JiangValentina PyatkinYejin Choi
2023
Conference on Empirical Methods in Natural Language Processing • Findings

Moral or ethical judgments rely heavily on the specific contexts in which they occur. Understanding varying shades of defeasible contextualizations (i.e., additional information that strengthens or… 

"You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of Abstract Meaning Representation

Allyson EttingerJena D. HwangValentina PyatkinYejin Choi
2023
Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) show amazing proficiency and fluency in the use of language. Does this mean that they have also acquired insightful linguistic knowledge about the language, to an extent… 

Localized Symbolic Knowledge Distillation for Visual Commonsense Models

Jae Sung ParkJack HesselKhyathi Raghavi ChanduYejin Choi
2023
NeurIPS

Instruction following vision-language (VL) models offer a flexible interface that supports a broad range of multimodal tasks in a zero-shot fashion. However, interfaces that operate on full images… 

RCT Rejection Sampling for Causal Estimation Evaluation

Katherine A. KeithSergey FeldmanDavid JurgensRohit Bhattacharya
2023
Transactions on Machine Learning Research

Confounding is a significant obstacle to unbiased estimation of causal effects from observational data. For settings with high-dimensional covariates -- such as text data, genomics, or the… 

CHAMP: Efficient Annotation and Consolidation of Cluster Hierarchies

Arie CattanTom HopeDoug DowneyIdo Dagan
2023
Conference on Empirical Methods in Natural Language Processing

Various NLP tasks require a complex hierarchical structure over nodes, where each node is a cluster of items. Examples include generating entailment graphs, hierarchical cross-document coreference… 

CARE: Extracting Experimental Findings From Clinical Literature

Aakanksha NaikBailey KuehlErin BransomTom Hope
2023
arXiv.org

Extracting fine-grained experimental findings from literature can provide massive utility for scientific applications. Prior work has focused on developing annotation schemas and datasets for…