Papers

Learn more about AI2's Lasting Impact Award
Viewing 181-184 of 184 papers
  • Semi-supervised sequence tagging with bidirectional language models

    Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, and Russell PowerACL2017 Pre-trained word embeddings learned from unlabeled text have become a standard component of neural network architectures for NLP tasks. However, in most cases, the recurrent network that operates on word-level representations to produce context sensitive…
  • Deep Semantic Role Labeling: What Works and What's Next

    Luheng He, Kenton Lee, Mike Lewis, Luke S. ZettlemoyerACL2017 We introduce a new deep learning model for semantic role labeling (SRL) that significantly improves the state of the art, along with detailed analyses to reveal its strengths and limitations. We use a deep highway BiLSTM architecture with constrained decoding…
  • End-to-end Neural Coreference Resolution

    Kenton Lee, Luheng He, Mike Lewis, and Luke ZettlemoyerEMNLP2017 We introduce the first end-to-end coreference resolution model and show that it significantly outperforms all previous work without using a syntactic parser or handengineered mention detector. The key idea is to directly consider all spans in a document as…
  • Neural Semantic Parsing with Type Constraints for Semi-Structured Tables

    Jayant Krishnamurthy, Pradeep Dasigi, and Matt GardnerEMNLP2017 We present a new semantic parsing model for answering compositional questions on semi-structured Wikipedia tables. Our parser is an encoder-decoder neural network with two key technical innovations: (1) a grammar for the decoder that only generates well-typed…