Research - Papers
Explore a selection of our published work on a variety of key research challenges in AI.
Detection and Measurement of Syntactic Templates in Generated Text
Recent work on evaluating the diversity of text generated by LLMs has focused on word-level features. Here we offer an analysis of syntactic features to characterize general repetition in models,…
SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories
Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be…
Scalable Data Ablation Approximations for Language Models through Modular Training and Merging
Training data compositions for Large Language Models (LLMs) can significantly affect their downstream performance. However, a thorough data ablation study exploring large sets of candidate data…
Merge to Learn: Efficiently Adding Skills to Language Models with Model Merging
Adapting general-purpose language models to new skills is currently an expensive process that must be repeated as new instruction datasets targeting new skills are created, or can cause the models…
Mechanistic?
The rise of the term “mechanistic interpretability” has accompanied increasing interest in understanding neural models—particularly language models. However, this jargon has also led to a fair…
Plausibly Problematic Questions in Multiple-Choice Benchmarks for Commonsense Reasoning
Questions involving commonsense reasoning about everyday situations often admit many possible or plausible answers. In contrast, multiple-choice question (MCQ) benchmarks for commonsense reasoning…
ComPO: Community Preferences for Language Model Personalization
Conventional algorithms for training language models (LMs) with human feedback rely on preferences that are assumed to account for an"average"user, disregarding subjectivity and finer-grained…
CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization
Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup…
IdeaSynth: Iterative Research Idea Development Through Evolving and Composing Idea Facets with Literature-Grounded Feedback
Research ideation involves broad exploring and deep refining ideas. Both require deep engagement with literature. Existing tools focus primarily on idea broad generation, yet offer little support…
m&m's: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks
Real-world multi-modal problems are rarely solved by a single machine learning model, and often require multi-step computational plans that involve stitching several models. Tool-augmented LLMs hold…