Research - Papers
Explore a selection of our published work on a variety of key research challenges in AI.
Noisy Channel Language Model Prompting for Few-Shot Text Classification
We introduce a noisy channel approach for language model prompting in few-shot text classification. Instead of computing the likelihood of the label given the input (referred as direct models),…
FaVIQ: FAct Verification from Information-seeking Questions
Despite significant interest in developing general purpose fact checking models, it is challenging to construct a large-scale fact verification dataset with realistic real-world claims. Existing…
Impact of Warmer Sea Surface Temperature on the Global Pattern of Intense Convection: Insights From a Global Storm Resolving Model
Intense convection (updrafts exceeding 10 m s−1) plays an essential role in severe weather and Earth's energy balance. Despite its importance, how the global pattern of intense convection changes in…
Linear Adversarial Concept Erasure
We formulate the problem of identifying and erasing a linear subspace that corresponds to a given concept, in order to prevent linear predictors from recovering the concept. We model this problem as…
Dyna-bAbI: unlocking bAbI’s potential with dynamic synthetic benchmarking
While neural language models often perform surprisingly well on natural language understanding (NLU) tasks, their strengths and limitations remain poorly understood. Controlled synthetic tasks are…
Learning to Repair: Repairing model output errors after deployment using a dynamic memory of feedback
Large language models (LMs), while power-ful, are not immune to mistakes, but can be difficult to retrain. Our goal is for an LM to continue to improve after deployment, without retraining, using…
Aligning to Social Norms and Values in Interactive Narratives
We focus on creating agents that act in alignment with socially beneficial norms and values in interactive narratives or text-based games—environments wherein an agent perceives and interacts with a…
MultiVerS: Improving scientific claim verification with weak supervision and full-document context
The scientific claim verification task requires an NLP system to label scientific documents which Support or Refute an input claim, and to select evidentiary sentences (or rationales) justifying…
Time Waits for No One! Analysis and Challenges of Temporal Misalignment
When an NLP model is trained on text data from one time period and tested or deployed on data from another, the resulting temporal misalignment can degrade end-task performance. In this work, we…
NeuroLogic A*esque Decoding: Constrained Text Generation with Lookahead Heuristics
The dominant paradigm for neural text generation is left-to-right decoding from autoregressive language models. Constrained or controllable generation under complex lexical constraints, however,…