Research - Papers
Explore a selection of our published work on a variety of key research challenges in AI.
Data Contamination Report from the 2024 CONDA Shared Task
The 1st Workshop on Data Contamination (CONDA 2024) focuses on all relevant aspects of data contamination in natural language processing, where data contamination is understood as situations where…
The Illusion of State in State-Space Models
State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One…
Skill Set Optimization: Reinforcing Language Model Behavior via Transferable Skills
Large language models (LLMs) have recently been used for sequential decision making in interactive environments. However, leveraging environment reward signals for continual LLM actor improvement is…
Data-driven Discovery with Large Generative Models
With the accumulation of data at an unprecedented rate, its potential to fuel scientific discovery is growing exponentially. This position paper urges the Machine Learning (ML) community to exploit…
Tell, Don't Show!: Language Guidance Eases Transfer Across Domains in Images and Videos
We introduce LaGTran, a novel framework that utilizes text supervision to guide robust transfer of discriminative knowledge from labeled source to unlabeled target data with domain gaps. While…
Climate sensitivity and relative humidity changes in global storm-resolving model simulations of climate change
The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The…
PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators
We present PoliFormer (Policy Transformer), an RGB-only indoor navigation agent trained end-to-end with reinforcement learning at scale that generalizes to the real-world without adaptation despite…
Probabilistic Emulation of a Global Climate Model with Spherical DYffusion
Data-driven deep learning models are on the verge of transforming global weather forecasting. It is an open question if this success can extend to climate modeling, where long inference rollouts and…
PDDLEGO: Iterative Planning in Textual Environments
Planning in textual environments have been shown to be a long-standing challenge even for current models. A recent, promising line of work uses LLMs to generate a formal representation of the…
Unified-IO 2: Scaling Autoregressive Multimodal Models with Vision, Language, Audio, and Action
We present Unified-IO 2, the first autoregressive multimodal model that is capable of understanding and generating images, text, audio, and action. To unify different modalities, we tokenize inputs…