Learn more about AI2's Lasting Impact Award
All Projects
All Years
Viewing 461-470 of 503 papers
  • Combining Retrieval, Statistics, and Inference to Answer Elementary Science Questions

    Peter Clark, Oren Etzioni, Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, and Peter TurneyAAAI2016
    What capabilities are required for an AI system to pass standard 4th Grade Science Tests? Previous work has examined the use of Markov Logic Networks (MLNs) to represent the requisite background knowledge and interpret test questions, but did not improve upon an information retrieval (IR) baseline. In this paper, we describe an alternative approach that operates at three levels of representation and reasoning: information retrieval, corpus statistics, and simple inference over a semi-automatically constructed knowledge base, to achieve substantially improved results. We evaluate the methods on six years of unseen, unedited exam questions from the NY Regents Science Exam (using only non-diagram, multiple choice questions), and show that our overall system’s score is 71.3%, an improvement of 23.8% (absolute) over the MLN-based method described in previous work. We conclude with a detailed analysis, illustrating the complementary strengths of each method in the ensemble. Our datasets are being released to enable further research.
  • Exact Sampling with Integer Linear Programs and Random Perturbations

    Carolyn Kim, Ashish Sabharwal, and Stefano ErmonAAAI2016
    We consider the problem of sampling from a discrete probability distribution specified by a graphical model. Exact samples can, in principle, be obtained by computing the mode of the original model perturbed with an exponentially many i.i.d. random variables. We propose a novel algorithm that views this as a combinatorial optimization problem and searches for the extreme state using a standard integer linear programming (ILP) solver, appropriately extended to account for the random perturbation. Our technique, GumbelMIP, leverages linear programming (LP) relaxations to evaluate the quality of samples and prune large portions of the search space, and can thus scale to large tree-width models beyond the reach of current exact inference methods. Further, when the optimization problem is not solved to optimality, our method yields a novel approximate sampling technique. We empirically demonstrate that our approach parallelizes well, our exact sampler scales better than alternative approaches, and our approximate sampler yields better quality samples than a Gibbs sampler and a low-dimensional perturbation method.
  • Learning Continuous-Time Bayesian Networks in Relational Domains: A Non-Parametric Approach

    Shuo Yang, Tushar Khot, Kristian Kersting, and Sriraam NatarajanAAAI2016
    Many real world applications in medicine, biology, communication networks, web mining, and economics, among others, involve modeling and learning structured stochastic processes that evolve over continuous time. Existing approaches, however, have focused on propositional domains only. Without extensive feature engineering, it is difficult---if not impossible---to apply them within relational domains where we may have varying number of objects and relations among them. We therefore develop the first relational representation called Relational Continuous-Time Bayesian Networks (RCTBNs) that can address this challenge. It features a nonparametric learning method that allows for efficiently learning the complex dependencies and their strengths simultaneously from sequence data. Our experimental results demonstrate that RCTBNs can learn as effectively as state-of-the-art approaches for propositional tasks while modeling relational tasks faithfully.
  • Selecting Near-Optimal Learners via Incremental Data Allocation

    Ashish Sabharwal, Horst Samulowitz, and Gerald TesauroAAAI2016
    We study a novel machine learning (ML) problem setting of sequentially allocating small subsets of training data amongst a large set of classifiers. The goal is to select a classifier that will give near-optimal accuracy when trained on all data, while also minimizing the cost of misallocated samples. This is motivated by large modern datasets and ML toolkits with many combinations of learning algorithms and hyper- parameters. Inspired by the principle of “optimism under un- certainty,” we propose an innovative strategy, Data Allocation using Upper Bounds (DAUB), which robustly achieves these objectives across a variety of real-world datasets. We further develop substantial theoretical support for DAUB in an idealized setting where the expected accuracy of a classifier trained on n samples can be known exactly. Under these conditions we establish a rigorous sub-linear bound on the regret of the approach (in terms of misallocated data), as well as a rigorous bound on suboptimality of the selected classifier. Our accuracy estimates using real-world datasets only entail mild violations of the theoretical scenario, suggesting that the practical behavior of DAUB is likely to approach the idealized behavior.
  • Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies

    Bhavana Dalvi, Aditya Mishra, and William W. CohenWSDM2016
    In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. has shown that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.
  • Keeping AI Legal

    Amitai Etzioni and Oren EtzioniVanderbilt2016
    AI programs make numerous decisions on their own, lack transparency, and may change frequently. Hence, the article shows, unassisted human agents — such as auditors, accountants, inspectors, and police — cannot ensure that AI guided instruments will abide by the law. Human agents need assistance of AI oversight programs that analyze and oversee the operational AI programs. The article then asks whether operational AI programs should be programmed to enable human users to override them — without that such a move would undermine the legal order. The article next points out that AI operational programs provide very high surveillance capacities, and that hence AI oversight programs are essential for protecting individual rights in the cyber age. The article closes by discussing the argument that AI guided instruments, e.g. robots, lead to endangering much more than the legal order — that they may turn on their makers, or even destroy humanity.
  • Segment-Phrase Table for Semantic Segmentation, Visual Entailment and Paraphrasing

    Hamid Izadinia, Fereshteh Sadeghi, Santosh Divvala, Hanna Hajishirzi, Yejin Choi, and Ali FarhadiICCV2015
    We introduce Segment-Phrase Table (SPT), a large collection of bijective associations between textual phrases and their corresponding segmentations. Leveraging recent progress in object recognition and natural language semantics, we show how we can successfully build a highquality segment-phrase table using minimal human supervision. More importantly, we demonstrate the unique value unleashed by this rich bimodal resource, for both vision as well as natural language understanding. First, we show that fine-grained textual labels facilitate contextual reasoning that helps in satisfying semantic constraints across image segments. This feature enables us to achieve state-of-the-art segmentation results on benchmark datasets. Next, we show that the association of high-quality segmentations to textual phrases aids in richer semantic understanding and reasoning of these textual phrases. Leveraging this feature, we motivate the problem of visual entailment and visual paraphrasing, and demonstrate its utility on a large dataset.
  • Solving Geometry Problems: Combining Text and Diagram Interpretation

    Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint MalcolmEMNLP2015
    This paper introduces GeoS, the first automated system to solve unaltered SAT geometry questions by combining text understanding and diagram interpretation. We model the problem of understanding geometry questions as submodular optimization, and identify a formal problem description likely to be compatible with both the question text and diagram. GeoS then feeds the description to a geometric solver that attempts to determine the correct answer. In our experiments, GeoS achieves a 49% score on official SAT questions, and a score of 61% on practice questions.1 Finally, we show that by integrating textual and visual information, GeoS boosts the accuracy of dependency and semantic parsing of the question text.
  • Looking Beyond Text: Extracting Figures, Tables and Captions from Computer Science Papers

    Christopher Clark and Santosh DivvalaAAAI • Workshop on Scholarly Big Data2015
    Identifying and extracting figures and tables along with their captions from scholarly articles is important both as a way of providing tools for article summarization, and as part of larger systems that seek to gain deeper, semantic understanding of these articles. While many "off-the-shelf" tools exist that can extract embedded images from these documents, e.g. PDFBox, Poppler, etc., these tools are unable to extract tables, captions, and figures composed of vector graphics. Our proposed approach analyzes the structure of individual pages of a document by detecting chunks of body text, and locates the areas wherein figures or tables could reside by reasoning about the empty regions within that text. This method can extract a wide variety of figures because it does not make strong assumptions about the format of the figures embedded in the document, as long as they can be differentiated from the main article's text. Our algorithm also demonstrates a caption-to-figure matching component that is effective even in cases where individual captions are adjacent to multiple figures. Our contribution also includes methods for leveraging particular consistency and formatting assumptions to identify titles, body text and captions within each article. We introduce a new dataset of 150 computer science papers along with ground truth labels for the locations of the figures, tables and captions within them. Our algorithm achieves 96% precision at 92% recall when tested against this dataset, surpassing previous state of the art. We release our dataset, code, and evaluation scripts on our project website for enabling future research.
  • Elementary School Science and Math Tests as a Driver for AI: Take the Aristo Challenge!

    Peter ClarkProceedings of IAAI2015
    While there has been an explosion of impressive, datadriven AI applications in recent years, machines still largely lack a deeper understanding of the world to answer questions that go beyond information explicitly stated in text, and to explain and discuss those answers. To reach this next generation of AI applications, it is imperative to make faster progress in areas of knowledge, modeling, reasoning, and language. Standardized tests have often been proposed as a driver for such progress, with good reason: Many of the questions require sophisticated understanding of both language and the world, pushing the boundaries of AI, while other questions are easier, supporting incremental progress. In Project Aristo at the Allen Institute for AI, we are working on a specific version of this challenge, namely having the computer pass Elementary School Science and Math exams. Even at this level there is a rich variety of problems and question types, the most difficult requiring significant progress in AI. Here we propose this task as a challenge problem for the community, and are providing supporting datasets. Solutions to many of these problems would have a major impact on the field so we encourage you: Take the Aristo Challenge!
All Projects
All Years