Learn more about AI2's Lasting Impact Award
All Projects
All Years
Viewing 481-490 of 519 papers
  • Hierarchical Semi-supervised Classification with Incomplete Class Hierarchies

    Bhavana Dalvi, Aditya Mishra, and William W. CohenWSDM2016
    In an entity classification task, topic or concept hierarchies are often incomplete. Previous work by Dalvi et al. has shown that in non-hierarchical semi-supervised classification tasks, the presence of such unanticipated classes can cause semantic drift for seeded classes. The Exploratory learning method was proposed to solve this problem; however it is limited to the flat classification task. This paper builds such exploratory learning methods for hierarchical classification tasks. We experimented with subsets of the NELL ontology and text, and HTML table datasets derived from the ClueWeb09 corpus. Our method (OptDAC-ExploreEM) outperforms the existing Exploratory EM method, and its naive extension (DAC-ExploreEM), in terms of seed class F1 on average by 10% and 7% respectively.
  • Keeping AI Legal

    Amitai Etzioni and Oren EtzioniVanderbilt2016
    AI programs make numerous decisions on their own, lack transparency, and may change frequently. Hence, the article shows, unassisted human agents — such as auditors, accountants, inspectors, and police — cannot ensure that AI guided instruments will abide by the law. Human agents need assistance of AI oversight programs that analyze and oversee the operational AI programs. The article then asks whether operational AI programs should be programmed to enable human users to override them — without that such a move would undermine the legal order. The article next points out that AI operational programs provide very high surveillance capacities, and that hence AI oversight programs are essential for protecting individual rights in the cyber age. The article closes by discussing the argument that AI guided instruments, e.g. robots, lead to endangering much more than the legal order — that they may turn on their makers, or even destroy humanity.
  • Segment-Phrase Table for Semantic Segmentation, Visual Entailment and Paraphrasing

    Hamid Izadinia, Fereshteh Sadeghi, Santosh Divvala, Hanna Hajishirzi, Yejin Choi, and Ali FarhadiICCV2015
    We introduce Segment-Phrase Table (SPT), a large collection of bijective associations between textual phrases and their corresponding segmentations. Leveraging recent progress in object recognition and natural language semantics, we show how we can successfully build a highquality segment-phrase table using minimal human supervision. More importantly, we demonstrate the unique value unleashed by this rich bimodal resource, for both vision as well as natural language understanding. First, we show that fine-grained textual labels facilitate contextual reasoning that helps in satisfying semantic constraints across image segments. This feature enables us to achieve state-of-the-art segmentation results on benchmark datasets. Next, we show that the association of high-quality segmentations to textual phrases aids in richer semantic understanding and reasoning of these textual phrases. Leveraging this feature, we motivate the problem of visual entailment and visual paraphrasing, and demonstrate its utility on a large dataset.
  • Solving Geometry Problems: Combining Text and Diagram Interpretation

    Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint MalcolmEMNLP2015
    This paper introduces GeoS, the first automated system to solve unaltered SAT geometry questions by combining text understanding and diagram interpretation. We model the problem of understanding geometry questions as submodular optimization, and identify a formal problem description likely to be compatible with both the question text and diagram. GeoS then feeds the description to a geometric solver that attempts to determine the correct answer. In our experiments, GeoS achieves a 49% score on official SAT questions, and a score of 61% on practice questions.1 Finally, we show that by integrating textual and visual information, GeoS boosts the accuracy of dependency and semantic parsing of the question text.
  • Looking Beyond Text: Extracting Figures, Tables and Captions from Computer Science Papers

    Christopher Clark and Santosh DivvalaAAAI • Workshop on Scholarly Big Data2015
    Identifying and extracting figures and tables along with their captions from scholarly articles is important both as a way of providing tools for article summarization, and as part of larger systems that seek to gain deeper, semantic understanding of these articles. While many "off-the-shelf" tools exist that can extract embedded images from these documents, e.g. PDFBox, Poppler, etc., these tools are unable to extract tables, captions, and figures composed of vector graphics. Our proposed approach analyzes the structure of individual pages of a document by detecting chunks of body text, and locates the areas wherein figures or tables could reside by reasoning about the empty regions within that text. This method can extract a wide variety of figures because it does not make strong assumptions about the format of the figures embedded in the document, as long as they can be differentiated from the main article's text. Our algorithm also demonstrates a caption-to-figure matching component that is effective even in cases where individual captions are adjacent to multiple figures. Our contribution also includes methods for leveraging particular consistency and formatting assumptions to identify titles, body text and captions within each article. We introduce a new dataset of 150 computer science papers along with ground truth labels for the locations of the figures, tables and captions within them. Our algorithm achieves 96% precision at 92% recall when tested against this dataset, surpassing previous state of the art. We release our dataset, code, and evaluation scripts on our project website for enabling future research.
  • Elementary School Science and Math Tests as a Driver for AI: Take the Aristo Challenge!

    Peter ClarkProceedings of IAAI2015
    While there has been an explosion of impressive, datadriven AI applications in recent years, machines still largely lack a deeper understanding of the world to answer questions that go beyond information explicitly stated in text, and to explain and discuss those answers. To reach this next generation of AI applications, it is imperative to make faster progress in areas of knowledge, modeling, reasoning, and language. Standardized tests have often been proposed as a driver for such progress, with good reason: Many of the questions require sophisticated understanding of both language and the world, pushing the boundaries of AI, while other questions are easier, supporting incremental progress. In Project Aristo at the Allen Institute for AI, we are working on a specific version of this challenge, namely having the computer pass Elementary School Science and Math exams. Even at this level there is a rich variety of problems and question types, the most difficult requiring significant progress in AI. Here we propose this task as a challenge problem for the community, and are providing supporting datasets. Solutions to many of these problems would have a major impact on the field so we encourage you: Take the Aristo Challenge!
  • Identifying Meaningful Citations

    Marco Valenzuela, Vu Ha, and Oren EtzioniAAAI • Workshop on Scholarly Big Data2015
    We introduce the novel task of identifying important citations in scholarly literature, i.e., citations that indicate that the cited work is used or extended in the new effort. We believe this task is a crucial component in algorithms that detect and follow research topics and in methods that measure the quality of publications. We model this task as a supervised classification problem at two levels of detail: a coarse one with classes (important vs. non-important), and a more detailed one with four importance classes. We annotate a dataset of approximately 450 citations with this information, and release it publicly. We propose a supervised classification approach that addresses this task with a battery of features that range from citation counts to where the citation appears in the body of the paper, and show that, our approach achieves a precision of 65% for a recall of 90%.
  • Spinning Straw into Gold: Using Free Text to Train Monolingual Alignment Models for Non-factoid Question Answering

    Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Peter ClarkNAACL2015
    Monolingual alignment models have been shown to boost the performance of question answering systems by "bridging the lexical chasm" between questions and answers. The main limitation of these approaches is that they require semistructured training data in the form of question-answer pairs, which is difficult to obtain in specialized domains or lowresource languages. We propose two inexpensive methods for training alignment models solely using free text, by generating artificial question-answer pairs from discourse structures. Our approach is driven by two representations of discourse: a shallow sequential representation, and a deep one based on Rhetorical Structure Theory. We evaluate the proposed model on two corpora from different genres and domains: one from Yahoo! Answers and one from the biology domain, and two types of non-factoid questions: manner and reason. We show that these alignment models trained directly from discourse structures imposed on free text improve performance considerably over an information retrieval baseline and a neural network language model trained on the same data.
  • Learning Knowledge Graphs for Question Answering through Conversational Dialog

    Ben Hixon, Peter Clark, and Hannaneh HajishirziNAACL2015
    We describe how a question-answering system can learn about its domain from conversational dialogs. Our system learns to relate concepts in science questions to propositions in a fact corpus, stores new concepts and relations in a knowledge graph (KG), and uses the graph to solve questions. We are the first to acquire knowledge for question-answering from open, natural language dialogs without a fixed ontology or domain model that predetermines what users can say. Our relation-based strategies complete more successful dialogs than a query expansion baseline, our taskdriven relations are more effective for solving science questions than relations from general knowledge sources, and our method is practical enough to generalize to other domains.
  • Higher-order Lexical Semantic Models for Non-factoid Answer Reranking

    Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai Surdeanu, and Peter ClarkTACL2015
    Lexical semantic models provide robust performance for question answering, but, in general, can only capitalize on direct evidence seen during training. For example, monolingual alignment models acquire term alignment probabilities from semistructured data such as question-answer pairs; neural network language models learn term embeddings from unstructured text. All this knowledge is then used to estimate the semantic similarity between question and answer candidates. We introduce a higher-order formalism that allows all these lexical semantic models to chain direct evidence to construct indirect associations between question and answer texts, by casting the task as the traversal of graphs that encode direct term associations. Using a corpus of 10,000 questions from Yahoo! Answers, we experimentally demonstrate that higher-order methods are broadly applicable to alignment and language models, across both word and syntactic representations. We show that an important criterion for success is controlling for the semantic drift that accumulates during graph traversal. All in all, the proposed higher-order approach improves five out of the six lexical semantic models investigated, with relative gains of up to +13% over their first-order variants.
All Projects
All Years