Skip to main content ->
Ai2

Research - Papers

Explore a selection of our published work on a variety of key research challenges in AI.

Filter papers

NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints

Ximing LuPeter WestRowan ZellersYejin Choi
2020
NAACL

Conditional text generation often requires lexical constraints, i.e., which words should or shouldn’t be included in the output text. While the dominant recipe for conditional text generation has… 

Paraphrasing vs Coreferring: Two Sides of the Same Coin

Y. MegedAvi CaciularuVered ShwartzI. Dagan
2020
arXiv

We study the potential synergy between two different NLP tasks, both confronting lexical variability: identifying predicate paraphrases and event coreference resolution. First, we used annotations… 

Generative Data Augmentation for Commonsense Reasoning

Yiben YangChaitanya MalaviyaJared FernandezDoug Downey
2020
Findings of EMNLP

Recent advances in commonsense reasoning depend on large-scale human-annotated training data to achieve peak performance. However, manual curation of training examples is expensive and has been… 

Evaluating Models' Local Decision Boundaries via Contrast Sets

M. GardnerY. ArtziV. Basmovaet al
2020
Findings of EMNLP

Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading:… 

Learning Object Detection from Captions via Textual Scene Attributes

Achiya JerbiRoei HerzigJonathan BerantAmir Globerson
2020
arXiv

Object detection is a fundamental task in computer vision, requiring large annotated datasets that are difficult to collect, as annotators need to label objects and their bounding boxes. Thus, it is… 

Scene Graph to Image Generation with Contextualized Object Layout Refinement

Maor IvgiYaniv BennyAvichai Ben-DavidLior Wolf
2020
arXiv

Generating high-quality images from scene graphs, that is, graphs that describe multiple entities in complex relations, is a challenging task that attracted substantial interest recently. Prior work… 

Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project

E. OngL. Lu WangJ. Schaubet al
2020
Nature Reviews Nephrology

An important need exists to better understand and stratify kidney disease according to its underlying pathophysiology in order to develop more precise and effective therapeutic agents. National… 

Span-based Semantic Parsing for Compositional Generalization

Jonathan HerzigJonathan Berant
2020
arXiv

Despite the success of sequence-tosequence (seq2seq) models in semantic parsing, recent work has shown that they fail in compositional generalization, i.e., the ability to generalize to new… 

GFDL SHiELD: A Unified System for Weather-to-Seasonal Prediction

Harris L.Zhou L.Lin SStern W
2020
Journal of Advances in Modeling Earth Systems

We present the System for High-resolution prediction on Earth-to-Local Domains (SHiELD), an atmosphere model developed by the Geophysical Fluid Dynamics Laboratory (GFDL) coupling the nonhydrostatic… 

What Does My QA Model Know? Devising Controlled Probes using Expert Knowledge

Kyle RichardsonAshish Sabharwal
2020
TACL

Open-domain question answering (QA) is known to involve several underlying knowledge and reasoning challenges, but are models actually learning such knowledge when trained on benchmark tasks? To…