Research - Papers
Explore a selection of our published work on a variety of key research challenges in AI.
Social IQA: Commonsense Reasoning about Social Interactions
We introduce Social IQa, the first largescale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social…
SpanBERT: Improving Pre-training by Representing and Predicting Spans
We present SpanBERT, a pre-training method that is designed to better represent and predict spans of text. Our approach extends BERT by (1) masking contiguous random spans, rather than random…
Topics to Avoid: Demoting Latent Confounds in Text Classification
Despite impressive performance on many text classification tasks, deep neural networks tend to learn frequent superficial patterns that are specific to the training data and do not always generalize…
Transfer Learning Between Related Tasks Using Expected Label Proportions
Deep learning systems thrive on abundance of labeled training data but such data is not always available, calling for alternative methods of supervision. One such method is expectation…
Universal Adversarial Triggers for Attacking and Analyzing NLP
dversarial examples highlight model vulnerabilities and are useful for evaluation and interpretation. We define universal adversarial triggers: input-agnostic sequences of tokens that trigger a…
WIQA: A dataset for "What if..." reasoning over procedural text
We introduce WIQA, the first large-scale dataset of "What if..." questions over procedural text. WIQA contains three parts: a collection of paragraphs each describing a process, e.g., beach erosion;…
Y'all should read this! Identifying Plurality in Second-Person Personal Pronouns in English Texts
Distinguishing between singular and plural "you" in English is a challenging task which has potential for downstream applications, such as machine translation or coreference resolution. While formal…
Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations
In this work, we present a framework to measure and mitigate intrinsic biases with respect to protected variables --such as gender-- in visual recognition tasks. We show that trained models…
COMET: Commonsense Transformers for Automatic Knowledge Graph Construction
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017).…
Compositional Questions Do Not Necessitate Multi-hop Reasoning
Multi-hop reading comprehension (RC) questions are challenging because they require reading and reasoning over multiple paragraphs. We argue that it can be difficult to construct large multi-hop RC…