Learn more about AI2's Lasting Impact Award
AI2 Israel
All Years
Viewing 1-10 of 68 papers
  • Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies

    Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, Jonathan BerantTACL2021
    A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce STRATEGYQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, STRATEGYQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in STRATEGYQA are short, topicdiverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of ∼ 66%
  • Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI

    Alon Jacovi, Ana Marasović, Tim Miller, Yoav GoldbergFAccT2021
    Trust is a central component of the interaction between people and AI, in that 'incorrect' levels of trust may cause misuse, abuse or disuse of the technology. But what, precisely, is the nature of trust in AI? What are the prerequisites and goals of the cognitive mechanism of trust, and how can we cause these prerequisites and goals, or assess whether they are being satisfied in a given interaction? This work aims to answer these questions. We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people). This model rests on two key properties of the vulnerability of the user and the ability to anticipate the impact of the AI model's decisions. We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold, and a formalization of 'trustworthiness' (which detaches from the notion of trustworthiness in sociology), and with it concepts of 'warranted' and 'unwarranted' trust. We then present the possible causes of warranted trust as intrinsic reasoning and extrinsic behavior, and discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted. Finally, we elucidate the connection between trust and XAI using our formalization.
  • Few-Shot Question Answering by Pretraining Span Selection

    Ori Ram, Yuval Kirstain, Jonathan Berant, A. Globerson, Omer LevyarXiv2021
    In a number of question answering (QA) benchmarks, pretrained models have reached human parity through fine-tuning on an order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred training examples are available. We show that standard span selection models perform poorly, highlighting the fact that current pretraining objective are far removed from question answering. To address this, we propose a new pretraining scheme that is more suitable for extractive question answering. Given a passage with multiple sets of recurring spans, we mask in each set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks, e.g., 72.7 F1 with only 128 examples on SQuAD, while maintaining competitive (and sometimes better) performance in the high-resource setting. Our findings indicate that careful design of pretraining schemes and model architecture can have a dramatic effect on performance in the few-shot settings.
  • Transformer Feed-Forward Layers Are Key-Value Memories

    Mor Geva, R. Schuster, Jonathan Berant, Omer LevyarXiv2020
    Feed-forward layers constitute two-thirds of a transformer model’s parameters, yet their role in the network remains underexplored. We show that feed-forward layers in transformer-based language models operate as key-value memories, where each key correlates with textual patterns in the training examples, and each value induces a distribution over the output vocabulary. Our experiments show that the learned patterns are human-interpretable, and that lower layers tend to capture shallow patterns, while upper layers learn more semantic ones. The values complement the keys’ input patterns by inducing output distributions that concentrate probability mass on tokens likely to appear immediately after each pattern, particularly in the upper layers. Finally, we demonstrate that the output of a feedforward layer is a composition of its memories, which is subsequently refined throughout the model’s layers via residual connections to produce the final output distribution.
  • Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason Over Implicit Knowledge

    Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, Jonathan BerantNeurIPS • Spotlight Presentation2020
    To what extent can a neural network systematically reason over symbolic facts? Evidence suggests that large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control. Recently, it has been shown that Transformer-based models succeed in consistent reasoning over explicit symbolic facts, under a “closed-world" assumption. However, in an open-domain setup, it is desirable to tap into the vast reservoir of implicit knowledge already encoded in the parameters of pre-trained LMs. In this work, we provide a first demonstration that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements. To do this, we describe a procedure for automatically generating datasets that teach a model new reasoning skills, and demonstrate that models learn to effectively perform inference which involves implicit taxonomic and world knowledge, chaining and counting. Finally, we show that “teaching” the models to reason generalizes beyond the training distribution: they successfully compose the usage of multiple reasoning skills in single examples. Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
  • It's not Greek to mBERT: Inducing Word-Level Translations from Multilingual BERT

    Hila Gonen, Shauli Ravfogel, Yanai Elazar, Yoav GoldbergEMNLP • BlackboxNLP Workshop 2020
    Recent works have demonstrated that multilingual BERT (mBERT) learns rich cross-lingual representations, that allow for transfer across languages. We study the word-level translation information embedded in mBERT and present two simple methods that expose remarkable translation capabilities with no fine-tuning. The results suggest that most of this information is encoded in a non-linear way, while some of it can also be recovered with purely linear tools. As part of our analysis, we test the hypothesis that mBERT learns representations which contain both a language-encoding component and an abstract, cross-lingual component, and explicitly identify an empirical language-identity subspace within mBERT representations.
  • Unsupervised Distillation of Syntactic Information from Contextualized Word Representations

    Shauli Ravfogel, Yanai Elazar, Jacob Goldberger, Yoav GoldbergEMNLP • BlackboxNLP Workshop2020
    Contextualized word representations, such as ELMo and BERT, were shown to perform well on various semantic and syntactic task. In this work, we tackle the task of unsupervised disentanglement between semantics and structure in neural language representations: we aim to learn a transformation of the contextualized vectors, that discards the lexical semantics, but keeps the structural information. To this end, we automatically generate groups of sentences which are structurally similar but semantically different, and use metric-learning approach to learn a transformation that emphasizes the structural component that is encoded in the vectors. We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics. Finally, we demonstrate the utility of our distilled representations by showing that they outperform the original contextualized representations in a few-shot parsing setting.
  • The Extraordinary Failure of Complement Coercion Crowdsourcing

    Yanai Elazar, Victoria Basmov, Shauli Ravfogel, Yoav Goldberg, Reut TsarfatyEMNLP • Insights from Negative Results in NLP Workshop 2020
    Crowdsourcing has eased and scaled up the collection of linguistic annotation in recent years. In this work, we follow known methodologies of collecting labeled data for the complement coercion phenomenon. These are constructions with an implied action -- e.g., "I started a new book I bought last week", where the implied action is reading. We aim to collect annotated data for this phenomenon by reducing it to either of two known tasks: Explicit Completion and Natural Language Inference. However, in both cases, crowdsourcing resulted in low agreement scores, even though we followed the same methodologies as in previous work. Why does the same process fail to yield high agreement scores? We specify our modeling schemes, highlight the differences with previous work and provide some insights about the task and possible explanations for the failure. We conclude that specific phenomena require tailored solutions, not only in specialized algorithms, but also in data collection methods.
  • A Novel Challenge Set for Hebrew Morphological Disambiguation and Diacritics Restoration

    Avi Shmidman, Joshua Guedalia, Shaltiel Shmidman, Moshe Koppel, Reut TsarfatyFindings of EMNLP2020
    One of the primary tasks of morphological parsers is the disambiguation of homographs. Particularly difficult are cases of unbalanced ambiguity, where one of the possible analyses is far more frequent than the others. In such cases, there may not exist sufficient examples of the minority analyses in order to properly evaluate performance, nor to train effective classifiers. In this paper we address the issue of unbalanced morphological ambiguities in Hebrew. We offer a challenge set for Hebrew homographs -- the first of its kind -- containing substantial attestation of each analysis of 21 Hebrew homographs. We show that the current SOTA of Hebrew disambiguation performs poorly on cases of unbalanced ambiguity. Leveraging our new dataset, we achieve a new state-of-the-art for all 21 words, improving the overall average F1 score from 0.67 to 0.95. Our resulting annotated datasets are made publicly available for further research.
  • Do Language Embeddings Capture Scales?

    Xikun Zhang, Deepak Ramachandran, Ian Tenney, Yanai Elazar, Dan RothFindings of EMNLP • BlackboxNLP Workshop 2020
    Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense, and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We show that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance and show that a simple method of canonicalizing numbers can have a significant effect on the results.
AI2 Israel
All Years