Papers

Learn more about AI2's Lasting Impact Award
AI2 Israel
All Years
Viewing 1-10 of 78 papers
  • Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies

    Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, Jonathan BerantTACL2021
    A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce STRATEGYQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, STRATEGYQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in STRATEGYQA are short, topicdiverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of ∼ 66%
  • SmBoP: Semi-autoregressive Bottom-up Semantic Parsing

    Ohad Rubin and Jonathan BerantNAACL2021
    The de-facto standard decoding method for semantic parsing in recent years has been to autoregressively decode the abstract syntax tree of the target program using a top-down depth-first traversal. In this work, we propose an alternative approach: a Semi-autoregressive Bottom-up Parser (SmBoP) that constructs at decoding step $t$ the top-$K$ sub-trees of height $\leq t$. Our parser enjoys several benefits compared to top-down autoregressive parsing. First, since sub-trees in each decoding step are generated in parallel, the theoretical runtime is logarithmic rather than linear. Second, our bottom-up approach learns representations with meaningful semantic sub-programs at each step, rather than semantically vague partial trees. Last, SmBoP includes Transformer-based layers that contextualize sub-trees with one another, allowing us, unlike traditional beam-search, to score trees conditioned on other trees that have been previously explored. We apply SmBoP on Spider, a challenging zero-shot semantic parsing benchmark, and show that SmBoP is competitive with top-down autoregressive parsing. On the test set, SmBoP obtains an EM score of $60.5\%$, similar to the best published score for a model that does not use database content, which is at $60.6\%$.
  • MULTIMODALQA: COMPLEX QUESTION ANSWERING OVER TEXT, TABLES AND IMAGES

    Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco, Hannaneh Hajishirzi, Jonathan BerantICLR2021
    When answering complex questions, people can seamlessly combine information from visual, textual and tabular sources. While interest in models that reason over multiple pieces of evidence has surged in recent years, there has been relatively little work on question answering models that reason across multiple modalities. In this paper, we present MULTIMODALQA (MMQA): a challenging question answering dataset that requires joint reasoning over text, tables and images. We create MMQA using a new framework for generating complex multi-modal questions at scale, harvesting tables from Wikipedia, and attaching images and text paragraphs using entities that appear in each table. We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions. Last, crowdsourcing workers take these automatically generated questions and rephrase them into more fluent language. We create 29,918 questions through this procedure, and empirically demonstrate the necessity of a multi-modal multi-hop approach to solve our task: our multi hop model, ImplicitDecomp, achieves an average F1 of 51.7 over cross-modal questions, substantially outperforming a strong baseline that achieves 38.2 F1, but still lags significantly behind human performance, which is at 90.1 F1.
  • Bootstrapping Relation Extractors using Syntactic Search by Examples

    Matan Eyal, Asaf Amrami, Hillel Taub-Tabib, Yoav GoldbergEACL2021
    The advent of neural-networks in NLP brought with it substantial improvements in supervised relation extraction. However, obtaining a sufficient quantity of training data remains a key challenge. In this work we propose a process for bootstrapping training datasets which can be performed quickly by non-NLP-experts. We take advantage of search engines over syntactic-graphs (Such as Shlain et al. (2020)) which expose a friendly by-example syntax. We use these to obtain positive examples by searching for sentences that are syntactically similar to user input examples. We apply this technique to relations from TACRED and DocRED and show that the resulting models are competitive with models trained on manually annotated data and on data obtained from distant supervision. The models also outperform models trained using NLG data augmentation techniques. Extending the search-based approach with the NLG method further improves the results.
  • First Align, then Predict: Understanding the Cross-Lingual Ability of Multilingual BERT

    Benjamin Muller, Yanai Elazar, Benoît Sagot, Djamé SeddahEACL2021
    Multilingual pretrained language models have demonstrated remarkable zero-shot crosslingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning. Despite promising results, we still lack a proper understanding of the source of this transfer. Using a novel layer ablation technique and analyses of the model’s internal representations, we show that multilingual BERT, a popular multilingual language model, can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a taskspecific language-agnostic predictor. While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during finetuning, the task predictor has little importance on the transfer and can be reinitialized during fine-tuning. We present extensive experiments with three distinct tasks, seventeen typologically diverse languages and multiple domains to support our hypothesis.
  • BERTese: Learning to Speak to BERT

    Adi Haviv, Jonathan Berant, A. GlobersonEACL2021
    Large pre-trained language models have been shown to encode large amounts of world and commonsense knowledge in their parameters, leading to substantial interest in methods for extracting that knowledge. In past work, knowledge was extracted by taking manuallyauthored queries and gathering paraphrases for them using a separate pipeline. In this work, we propose a method for automatically rewriting queries into “BERTese”, a paraphrase query that is directly optimized towards better knowledge extraction. To encourage meaningful rewrites, we add auxiliary loss functions that encourage the query to correspond to actual language tokens. We empirically show our approach outperforms competing baselines, obviating the need for complex pipelines. Moreover, BERTese provides some insight into the type of language that helps language models perform knowledge extraction.
  • Evaluating the Evaluation of Diversity in Natural Language Generation

    Guy Tevet, Jonathan BerantEACL2021
    Despite growing interest in natural language generation (NLG) models that produce diverse outputs, there is currently no principled method for evaluating the diversity of an NLG system. In this work, we propose a framework for evaluating diversity metrics. The framework measures the correlation between a proposed diversity metric and a diversity parameter, a single parameter that controls some aspect of diversity in generated text. For example, a diversity parameter might be a binary variable used to instruct crowdsourcing workers to generate text with either low or high content diversity. We demonstrate the utility of our framework by: (a) establishing best practices for eliciting diversity judgments from humans, (b) showing that humans substantially outperform automatic metrics in estimating content diversity, and (c) demonstrating that existing methods for controlling diversity by tuning a "decoding parameter" mostly affect form but not meaning. Our framework can advance the understanding of different diversity metrics, an essential step on the road towards better NLG systems.
  • What's in your Head? Emergent Behaviour in Multi-Task Transformer Models

    Mor Geva, Uri Katz, Aviv Ben-Arie, Jonathan BerantarXiv2021
    The primary paradigm for multi-task training in natural language processing is to represent the input with a shared pre-trained language model, and add a small, thin network (head) per task. Given an input, a target head is the head that is selected for outputting the final prediction. In this work, we examine the behaviour of non-target heads, that is, the output of heads when given input that belongs to a different task than the one they were trained for. We find that non-target heads exhibit emergent behaviour, which may either explain the target task, or generalize beyond their original task. For example, in a numerical reasoning task, a span extraction head extracts from the input the arguments to a computation that results in a number generated by a target generative head. In addition, a summarization head that is trained with a target question answering head, outputs query-based summaries when given a question and a context from which the answer is to be extracted. This emergent behaviour suggests that multi-task training leads to nontrivial extrapolation of skills, which can be harnessed for interpretability and generalization.
  • Achieving Model Robustness through Discrete Adversarial Training

    Maor Ivgi, Jonathan BerantarXiv2021
    Discrete adversarial attacks are symbolic perturbations to a language input that preserve the output label but lead to a prediction error. While such attacks have been extensively explored for the purpose of evaluating model robustness, their utility for improving robustness has been limited to offline augmentation only, i.e., given a trained model, attacks are used to generate perturbed (adversarial) examples, and the model is re-trained exactly once. In this work, we address this gap and leverage discrete attacks for online augmentation, where adversarial examples are generated at every step, adapting to the changing nature of the model. We also consider efficient attacks based on random sampling, that unlike prior work are not based on expensive search-based procedures. As a second contribution, we provide a general formulation for multiple searchbased attacks from past work, and propose a new attack based on best-first search. Surprisingly, we find that random sampling leads to impressive gains in robustness, outperforming the commonly-used offline augmentation, while leading to a speedup at training time of ∼10x. Furthermore, online augmentation with search-based attacks justifies the higher training cost, significantly improving robustness on three datasets. Last, we show that our proposed algorithm substantially improves robustness compared to prior methods
  • Value-aware Approximate Attention

    Ankit Gupta, Jonathan BerantarXiv2021
    Following the success of dot-product attention in Transformers, numerous approximations have been recently proposed to address its quadratic complexity with respect to the input length. However, all approximations thus far have ignored the contribution of the $\textit{value vectors}$ to the quality of approximation. In this work, we argue that research efforts should be directed towards approximating the true output of the attention sub-layer, which includes the value vectors. We propose a value-aware objective, and show theoretically and empirically that an optimal approximation of a value-aware objective substantially outperforms an optimal approximation that ignores values, in the context of language modeling. Moreover, we show that the choice of kernel function for computing attention similarity can substantially affect the quality of sparse approximations, where kernel functions that are less skewed are more affected by the value vectors.
AI2 Israel
All Years