Menu
Viewing 19 papers from 2015
Clear all
    • ICCV 2015
      Hamid Izadinia, Fereshteh Sadeghi, Santosh Divvala, Hanna Hajishirzi, Yejin Choi, and Ali Farhadi

      We introduce Segment-Phrase Table (SPT), a large collection of bijective associations between textual phrases and their corresponding segmentations. Leveraging recent progress in object recognition and natural language semantics, we show how we can successfully build a highquality segment-phrase table using minimal human supervision. More importantly, we demonstrate the unique value unleashed by this rich bimodal resource, for both vision as well as natural language understanding. First, we show that fine-grained textual labels facilitate contextual reasoning that helps in satisfying semantic constraints across image segments. This feature enables us to achieve state-of-the-art segmentation results on benchmark datasets. Next, we show that the association of high-quality segmentations to textual phrases aids in richer semantic understanding and reasoning of these textual phrases. Leveraging this feature, we motivate the problem of visual entailment and visual paraphrasing, and demonstrate its utility on a large dataset.

      Less More
    • EMNLP 2015
      Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi, Oren Etzioni, and Clint Malcolm

      This paper introduces GeoS, the first automated system to solve unaltered SAT geometry questions by combining text understanding and diagram interpretation. We model the problem of understanding geometry questions as submodular optimization, and identify a formal problem description likely to be compatible with both the question text and diagram. GeoS then feeds the description to a geometric solver that attempts to determine the correct answer. In our experiments, GeoS achieves a 49% score on official SAT questions, and a score of 61% on practice questions.1 Finally, we show that by integrating textual and visual information, GeoS boosts the accuracy of dependency and semantic parsing of the question text.

      Less More
    • AAAI • Workshop on Scholarly Big Data 2015
      Christopher Clark and Santosh Divvala

      Identifying and extracting figures and tables along with their captions from scholarly articles is important both as a way of providing tools for article summarization, and as part of larger systems that seek to gain deeper, semantic understanding of these articles. While many "off-the-shelf" tools exist that can extract embedded images from these documents, e.g. PDFBox, Poppler, etc., these tools are unable to extract tables, captions, and figures composed of vector graphics. Our proposed approach analyzes the structure of individual pages of a document by detecting chunks of body text, and locates the areas wherein figures or tables could reside by reasoning about the empty regions within that text. This method can extract a wide variety of figures because it does not make strong assumptions about the format of the figures embedded in the document, as long as they can be differentiated from the main article's text. Our algorithm also demonstrates a caption-to-figure matching component that is effective even in cases where individual captions are adjacent to multiple figures. Our contribution also includes methods for leveraging particular consistency and formatting assumptions to identify titles, body text and captions within each article. We introduce a new dataset of 150 computer science papers along with ground truth labels for the locations of the figures, tables and captions within them. Our algorithm achieves 96% precision at 92% recall when tested against this dataset, surpassing previous state of the art. We release our dataset, code, and evaluation scripts on our project website for enabling future research.

      Less More
    • Proceedings of IAAI 2015
      Peter Clark

      While there has been an explosion of impressive, datadriven AI applications in recent years, machines still largely lack a deeper understanding of the world to answer questions that go beyond information explicitly stated in text, and to explain and discuss those answers. To reach this next generation of AI applications, it is imperative to make faster progress in areas of knowledge, modeling, reasoning, and language. Standardized tests have often been proposed as a driver for such progress, with good reason: Many of the questions require sophisticated understanding of both language and the world, pushing the boundaries of AI, while other questions are easier, supporting incremental progress. In Project Aristo at the Allen Institute for AI, we are working on a specific version of this challenge, namely having the computer pass Elementary School Science and Math exams. Even at this level there is a rich variety of problems and question types, the most difficult requiring significant progress in AI. Here we propose this task as a challenge problem for the community, and are providing supporting datasets. Solutions to many of these problems would have a major impact on the field so we encourage you: Take the Aristo Challenge!

      Less More
    • AAAI • Workshop on Scholarly Big Data 2015
      Marco Valenzuela, Vu Ha, and Oren Etzioni

      We introduce the novel task of identifying important citations in scholarly literature, i.e., citations that indicate that the cited work is used or extended in the new effort. We believe this task is a crucial component in algorithms that detect and follow research topics and in methods that measure the quality of publications. We model this task as a supervised classification problem at two levels of detail: a coarse one with classes (important vs. non-important), and a more detailed one with four importance classes. We annotate a dataset of approximately 450 citations with this information, and release it publicly. We propose a supervised classification approach that addresses this task with a battery of features that range from citation counts to where the citation appears in the body of the paper, and show that, our approach achieves a precision of 65% for a recall of 90%.

      Less More
    • NAACL 2015
      Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Peter Clark

      Monolingual alignment models have been shown to boost the performance of question answering systems by "bridging the lexical chasm" between questions and answers. The main limitation of these approaches is that they require semistructured training data in the form of question-answer pairs, which is difficult to obtain in specialized domains or lowresource languages. We propose two inexpensive methods for training alignment models solely using free text, by generating artificial question-answer pairs from discourse structures. Our approach is driven by two representations of discourse: a shallow sequential representation, and a deep one based on Rhetorical Structure Theory. We evaluate the proposed model on two corpora from different genres and domains: one from Yahoo! Answers and one from the biology domain, and two types of non-factoid questions: manner and reason. We show that these alignment models trained directly from discourse structures imposed on free text improve performance considerably over an information retrieval baseline and a neural network language model trained on the same data.

      Less More
    • NAACL 2015
      Ben Hixon, Peter Clark, and Hannaneh Hajishirzi

      We describe how a question-answering system can learn about its domain from conversational dialogs. Our system learns to relate concepts in science questions to propositions in a fact corpus, stores new concepts and relations in a knowledge graph (KG), and uses the graph to solve questions. We are the first to acquire knowledge for question-answering from open, natural language dialogs without a fixed ontology or domain model that predetermines what users can say. Our relation-based strategies complete more successful dialogs than a query expansion baseline, our taskdriven relations are more effective for solving science questions than relations from general knowledge sources, and our method is practical enough to generalize to other domains.

      Less More
    • TACL 2015
      Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mihai Surdeanu, and Peter Clark

      Lexical semantic models provide robust performance for question answering, but, in general, can only capitalize on direct evidence seen during training. For example, monolingual alignment models acquire term alignment probabilities from semistructured data such as question-answer pairs; neural network language models learn term embeddings from unstructured text. All this knowledge is then used to estimate the semantic similarity between question and answer candidates. We introduce a higher-order formalism that allows all these lexical semantic models to chain direct evidence to construct indirect associations between question and answer texts, by casting the task as the traversal of graphs that encode direct term associations. Using a corpus of 10,000 questions from Yahoo! Answers, we experimentally demonstrate that higher-order methods are broadly applicable to alignment and language models, across both word and syntactic representations. We show that an important criterion for success is controlling for the semantic drift that accumulates during graph traversal. All in all, the proposed higher-order approach improves five out of the six lexical semantic models investigated, with relative gains of up to +13% over their first-order variants.

      Less More
    • CVPR 2015
      Fereshteh Sadeghi, Santosh Divvala, and Ali Farhadi

      How can we know whether a statement about our world is valid. For example, given a relationship between a pair of entities e.g., 'eat(horse, hay)', how can we know whether this relationship is true or false in general. Gathering such knowledge about entities and their relationships is one of the fundamental challenges in knowledge extraction. Most previous works on knowledge extraction havefocused purely on text-driven reasoning for verifying relation phrases. In this work, we introduce the problemof visual verification of relation phrases and developed aVisual Knowledge Extraction system called VisKE. Given a verb-based relation phrase between common nouns, our approach assess its validity by jointly analyzing over textand images and reasoning about the spatial consistency of the relative configurations of the entities and the relation involved. Our approach involves no explicit human supervision there by enabling large-scale analysis. Using our approach, we have already verified over 12000 relation phrases. Our approach has been used to not only enrich existing textual knowledge bases by improving their recall,but also augment open-domain question-answer reasoning.

      Less More
    • EMNLP 2015
      Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark, and Oren Etzioni

      Elementary-level science exams pose significant knowledge acquisition and reasoning challenges for automatic question answering. We develop a system that reasons with knowledge derived from textbooks, represented in a subset of first-order logic. Automatic extraction, while scalable, often results in knowledge that is incomplete and noisy, motivating use of reasoning mechanisms that handle uncertainty. Markov Logic Networks (MLNs) seem a natural model for expressing such knowledge, but the exact way of leveraging MLNs is by no means obvious. We investigate three ways of applying MLNs to our task. First, we simply use the extracted science rules directly as MLN clauses and exploit the structure present in hard constraints to improve tractability. Second, we interpret science rules as describing prototypical entities, resulting in a drastically simplified but brittle network. Our third approach, called Praline, uses MLNs to align lexical elements as well as define and control how inference should be performed in this task. Praline demonstrates a 15% accuracy boost and a 10x reduction in runtime as compared to other MLN-based methods, and comparable accuracy to word-based baseline approaches.

      Less More
    • EMNLP 2015
      Yang Li and Peter Clark

      Much of what we understand from text is not explicitly stated. Rather, the reader uses his/her knowledge to fill in gaps and create a coherent, mental picture or “scene” depicting what text appears to convey. The scene constitutes an understanding of the text, and can be used to answer questions that go beyond the text. Our goal is to answer elementary science questions, where this requirement is pervasive; A question will often give a partial description of a scene and ask the student about implicit information. We show that by using a simple “knowledge graph” representation of the question, we can leverage several large-scale linguistic resources to provide missing background knowledge, somewhat alleviating the knowledge bottleneck in previous approaches. The coherence of the best resulting scene, built from a question/answer-candidate pair, reflects the confidence that the answer candidate is correct, and thus can be used to answer multiple choice questions. Our experiments show that this approach outperforms competitive algorithms on several datasets tested. The significance of this work is thus to show that a simple “knowledge graph” representation allows a version of “interpretation as scene construction” to be made viable.

      Less More
    • K-CAP • First International Workshop on Capturing Scientific Knowledge (SciKnow) 2015
      Samuel Louvan, Chetan Naik, Veronica Lynn, Ankit Arun, Niranjan Balasubramanian, and Peter Clark

      We consider a 4th grade level question answering task. We focus on a subset involving recognizing instances of physical, biological, and other natural processes. Many processes involve similar entities and are hard to distinguish using simple bag-of-words representations alone.

      Less More
    • CPAIOR 2015
      Brian Kell, Ashish Sabharwal, and Willem-Jan van Hoeve

      Nogood learning is a critical component of Boolean satisfiability (SAT) solvers, and increasingly popular in the context of integer programming and constraint programming. We present a generic method to learn valid clauses from exact or approximate binary decision diagrams (BDDs) and resolution in the context of SAT solving. We show that any clause learned from SAT conflict analysis can also be generated using our method, while, in addition, we can generate stronger clauses that cannot be derived from one application of conflict analysis. Importantly, since SAT instances are often too large for an exact BDD representation, we focus on BDD relaxations of polynomial size and show how they can still be used to generated useful clauses. Our experimental results show that when this method is used as a preprocessing step and the generated clauses are appended to the original instance, the size of the search tree for a SAT solver can be significantly reduced.

      Less More
    • NIPS 2015
      Fereshteh Sadeghi, C. Lawrence Zitnick, and Ali Farhadi

      In this paper, we study the problem of answering visual analogy questions. These questions take the form of image A is to image B as image C is to what. Answering these questions entails discovering the mapping from image A to image B and then extending the mapping to image C and searching for the image D such that the relation from A to B holds for C to D.We pose this problem as learning an embedding that encourages pairs of analogous images with similar transformations to be close together using convolutional neural networks with a quadruple Siamese architecture. We introduce a dataset of visual analogy questions in natural images, and show first results of its kind on solving analogy questions on natural images.

      Less More
    • NIPS 2015
      Been Kim, Julie Shah, and Finale Doshi-Velez

      We present the Mind the Gap Model (MGM), an approach for interpretable feature extraction and selection. By placing interpretability criteria directly into the model, we allow for the model to both optimize parameters related to interpretability and to directly report a global set of distinguishable dimensions to assist with further data exploration and hypothesis generation. MGM extracts distinguishing features on real-world datasets of animal features, recipes ingredients, and disease co-occurrence. It also maintains or improves performance when compared to related approaches. We perform a user study with domain experts to show the MGM’s ability to help with dataset exploration.

      Less More
    • TACL 2015
      Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang

      This paper formalizes the problem of solving multi-sentence algebraic word problems as that of generating and scoring equation trees. We use integer linear programming to generate equation trees and score their likelihood by learning local and global discriminative models. These models are trained on a small set of word problems and their answers, without any manual annotation, in order to choose the equation that best matches the problem text. We refer to the overall system as ALGES. We compare ALGES with previous work and show that it covers the full gamut of arithmetic operations whereas Hosseini et al. (2014) only handle addition and subtraction. In addition, ALGES overcomes the brittleness of the Kush- man et al. (2014) approach on single-equation problems, yielding a 15% to 50% reduction in error.

      Less More
    • CVPR 2015
      Mohammad Rastegari, Hannaneh Hajishirzi, and Ali Farhadi

      In this paper we present a bottom-up method to instance level Multiple Instance Learning (MIL) that learns to discover positive instances with globally constrained reasoning about local pairwise similarities. We discover positive instances by optimizing for a ranking such that positive (top rank) instances are highly and consistently similar to each other and dissimilar to negative instances. Our approach takes advantage of a discriminative notion of pairwise similarity coupled with a structural cue in the form of a consistency metric that measures the quality of each similarity. We learn a similarity function for every pair of instances in positive bags by how similarly they differ from instances in negative bags, the only certain labels in MIL. Our experiments demonstrate that our method consistently outperforms state-of-the-art MIL methods both at bag-level and instance-level predictions in standard benchmarks, image category recognition, and text categorization datasets.

      Less More
    • ICCV 2015
      Bilge Soran, Ali Farhadi, and Linda Shapiro

      We all have experienced forgetting habitual actions among our daily activities. For example, we probably have forgotten to turn the lights off before leaving a room or turn the stove off after cooking. In this paper, we propose a solution to the problem of issuing notifications on actions that may be missed. This involves learning about interdependencies between actions and being able to predict an ongoing action while segmenting the input video stream. In order to show a proof of concept, we collected a new egocentric dataset, in which people wear a camera while making lattes. We show promising results on the extremely challenging task of issuing correct and timely reminders. We also show that our model reliably segments the actions, while predicting the ongoing one when only a few frames from the beginning of the action are observed. The overall prediction accuracy is 46.2% when only 10 frames of an action are seen (2/3 of a sec). Moreover, the overall recognition and segmentation accuracy is shown to be 72.7% when the whole activity sequence is observed. Finally, the online prediction and segmentation accuracy is 68.3% when the prediction is made at every time step.

      Less More
    • ICCV 2015
      Hamid Izadinia, Fereshteh Sadeghi, Santosh K. Divvala, Hannaneh Hajishirzi, Yejin Choi, and Ali Farhadi

      We introduce Segment-Phrase Table (SPT), a large collection of bijective associations between textual phrases and their corresponding segmentations. Leveraging recent progress in object recognition and natural language semantics, we show how we can successfully build a highquality segment-phrase table using minimal human supervision. More importantly, we demonstrate the unique value unleashed by this rich bimodal resource, for both vision as well as natural language understanding. First, we show that fine-grained textual labels facilitate contextual reasoning that helps in satisfying semantic constraints across image segments. This feature enables us to achieve state-of-the-art segmentation results on benchmark datasets. Next, we show that the association of high-quality segmentations to textual phrases aids in richer semantic understanding and reasoning of these textual phrases. Leveraging this feature, we motivate the problem of visual entailment and visual paraphrasing, and demonstrate its utility on a large dataset.

      Less More