Research - Papers
Explore a selection of our published work on a variety of key research challenges in AI.
Hallett‐Mossop Rime Splintering Dims Cumulus Clouds Over the Southern Ocean: New Insight From Nudged Global Storm‐Resolving Simulations
In clouds containing both liquid and ice with temperatures between −3°C and −8°C, liquid droplets collide with large ice crystals, freeze, and shatter, producing a plethora of small ice splinters.…
Correcting Coarse-Grid Weather and Climate Models by Machine Learning From Global Storm-Resolving Simulations
Global atmospheric `storm-resolving' models with horizontal grid spacing of less than 5~km resolve deep cumulus convection and flow in complex terrain. They promise to be reference models that could…
MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers
As major progress is made in open-ended text generation, measuring how close machine-generated text is to human language remains a critical open problem. We introduce MAUVE , a comparison measure…
Specializing Multilingual Language Models: An Empirical Study
Pretrained multilingual language models have become a common tool in transferring NLP capabilities to low-resource languages, often with adaptations. In this work, we study the performance,…
SciA11y: Converting Scientific Papers to Accessible HTML
We present SciA11y, a system that renders inaccessible scientific paper PDFs into HTML. SciA11y uses machine learning models to extract and understand the content of scientific PDFs, and reorganizes…
SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts
Determining coreference of concept mentions across multiple documents is fundamental for natural language understanding. Work on cross-document coreference resolution (CDCR) typically considers…
All That’s ‘Human’ Is Not Gold: Evaluating Human Evaluation of Generated Text
Human evaluations are typically considered the gold standard in natural language generation, but as models' fluency improves, how well can evaluators detect and judge machine-generated text? We run…
From 'F' to 'A' on the N.Y. Regents Science Exams: An Overview of the Aristo Project
AI has achieved remarkable mastery over games such as Chess, Go, and Poker, and even Jeopardy!, but the rich variety of standardized exams has remained a landmark challenge. Even in 2016, the best…
Don’t Stop Pretraining: Adapt Language Models to Domains and Tasks
Language models pretrained on text from a wide variety of sources form the foundation of today's NLP. In light of the success of these broad-coverage models, we investigate whether it is still…
Social Bias Frames: Reasoning about Social and Power Implications of Language
Language has the power to reinforce stereotypes and project social biases onto others. At the core of the challenge is that it is rarely what is stated explicitly, but all the implied meanings that…