Skip to main content ->
Ai2

Research - Papers

Explore a selection of our published work on a variety of key research challenges in AI.

Filter papers

Efficient Navigation with Language Pre-training and Stochastic Sampling

Xiujun LiChunyuan LiQiaolin XiaYejin Choi
2019
EMNLP

Core to the vision-and-language navigation (VLN) challenge is building robust instruction representations and action decoding schemes, which can generalize well to previously unseen instructions and… 

Global Reasoning over Database Structures for Text-to-SQL Parsing

Ben BoginMatt GardnerJonathan Berant
2019
EMNLP

State-of-the-art semantic parsers rely on auto-regressive decoding, emitting one symbol at a time. When tested against complex databases that are unobserved at training time (zero-shot), the parser… 

Knowledge Enhanced Contextual Word Representations

Matthew E. PetersMark NeumannRobert L. Loganand Noah A. Smith
2019
EMNLP

Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those… 

Low-Resource Parsing with Crosslingual Contextualized Representations

Phoebe MulcaireJungo KasaiNoah A. Smith
2019
CoNLL

Despite advances in dependency parsing, languages with small treebanks still present challenges. We assess recent approaches to multilingual contextual word representations (CWRs), and compare them… 

On the Limits of Learning to Actively Learn Semantic Representations

Omri KoshorekGabriel StanovskyYichu ZhouVivek Srikumar and Jonathan Berant
2019
CoNLL

One of the goals of natural language understanding is to develop models that map sentences into meaning representations. However, training such models requires expensive annotation of complex… 

PaLM: A Hybrid Parser and Language Model

Hao PengRoy SchwartzNoah A. Smith
2019
EMNLP

We present PaLM, a hybrid parser and neural language model. Building on an RNN language model, PaLM adds an attention layer over text spans in the left context. An unsupervised constituency parser… 

Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning

Pradeep DasigiNelson F. LiuAna MarasovicMatt Gardner
2019
EMNLP

Machine comprehension of texts longer than a single sentence often requires coreference resolution. However, most current reading comprehension benchmarks do not contain complex coreferential… 

RNN Architecture Learning with Sparse Regularization

Jesse DodgeRoy SchwartzHao PengNoah A. Smith
2019
EMNLP

Neural models for NLP typically use large numbers of parameters to reach state-of-the-art performance, which can lead to excessive memory usage and increased runtime. We present a structure learning… 

Show Your Work: Improved Reporting of Experimental Results

Jesse DodgeSuchin GururanganDallas CardNoah A. Smith
2019
EMNLP

Research in natural language processing proceeds, in part, by demonstrating that new models achieve superior performance (e.g., accuracy) on held-out test data, compared to previous results. In this… 

Topics to Avoid: Demoting Latent Confounds in Text Classification

Sachin KumarShuly WintnerNoah A. SmithYulia Tsvetkov
2019
EMNLP

Despite impressive performance on many text classification tasks, deep neural networks tend to learn frequent superficial patterns that are specific to the training data and do not always generalize…