Papers

Learn more about AI2's Lasting Impact Award
All Projects
All Years
Viewing 31-40 of 519 papers
  • Simplified Data Wrangling with ir_datasets

    Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan, Nazli GoharianarXiv2021
    Managing the data for Information Retrieval (IR) experiments can be challenging. Dataset documentation is scattered across the Internet and once one obtains a copy of the data, there are numerous different data formats to work with. Even basic formats can have subtle dataset-specific nuances that need to be considered for proper use. To help mitigate these challenges, we introduce a new robust and lightweight tool (ir_datasets) for acquiring, managing, and performing typical operations over datasets used in IR. We primarily focus on textual datasets used for ad-hoc search. This tool provides both a python and command line interface to numerous IR datasets and benchmarks. To our knowledge, this is the most extensive tool of its kind. Integrations with popular IR indexing and experimentation toolkits demonstrate the tool’s utility. We also provide documentation of these datasets through the ir_datasets catalog: https://ir-datasets.com/. The catalog acts as a hub for information on datasets used in IR, providing core information about what data each benchmark provides as well as links to more detailed information. We welcome community contributions and intend to continue to maintain and grow this tool. ACM Reference Format: Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan, and Nazli Goharian. . Simplified Data Wrangling with ir_datasets.
  • Augmenting Scientific Papers with Just-in-Time, Position-Sensitive Definitions of Terms and Symbols

    Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S. Weld, Marti A. HearstCHI2021
    Despite the central importance of research papers to scientific progress, they can be difficult to read. Comprehension is often stymied when the information needed to understand a passage resides somewhere else—in another section, or in another paper. In this work, we envision how interfaces can bring definitions of technical terms and symbols to readers when and where they need them most. We introduce ScholarPhi, an augmented reading interface with four novel features: (1) tooltips that surface position-sensitive definitions from elsewhere in a paper, (2) a filter over the paper that “declutters” it to reveal how the term or symbol is used across the paper, (3) automatic equation diagrams that expose multiple definitions in parallel, and (4) an automatically generated glossary of important terms and symbols. A usability study showed that the tool helps researchers of all experience levels read papers. Furthermore, researchers were eager to have ScholarPhi’s definitions available to support their everyday reading.
  • Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance

    Gagan Bansal, Tongshuang (Sherry) Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece Kamar, Marco Túlio Ribeiro, Daniel S. WeldCHI2021
    Many researchers motivate explainable AI with studies showing that human-AI team performance on decision-making tasks improves when the AI explains its recommendations. However, prior studies observed improvements from explanations only when the AI, alone, outperformed both the human and the best team. Can explanations help lead to complementary performance, where team accuracy is higher than either the human or the AI working solo? We conduct mixed-method user studies on three datasets, where an AI with accuracy comparable to humans helps participants solve a task (explaining itself in some conditions). While we observed complementary improvements from AI augmentation, they were not increased by explanations. Rather, explanations increased the chance that humans will accept the AI’s recommendation, regardless of its correctness. Our result poses new challenges for human-centered AI: Can we develop explanatory approaches that encourage appropriate trust in AI, and therefore help generate (or improve) complementary performance?
  • MULTIMODALQA: COMPLEX QUESTION ANSWERING OVER TEXT, TABLES AND IMAGES

    Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco, Hannaneh Hajishirzi, Jonathan BerantICLR2021
    When answering complex questions, people can seamlessly combine information from visual, textual and tabular sources. While interest in models that reason over multiple pieces of evidence has surged in recent years, there has been relatively little work on question answering models that reason across multiple modalities. In this paper, we present MULTIMODALQA (MMQA): a challenging question answering dataset that requires joint reasoning over text, tables and images. We create MMQA using a new framework for generating complex multi-modal questions at scale, harvesting tables from Wikipedia, and attaching images and text paragraphs using entities that appear in each table. We then define a formal language that allows us to take questions that can be answered from a single modality, and combine them to generate cross-modal questions. Last, crowdsourcing workers take these automatically generated questions and rephrase them into more fluent language. We create 29,918 questions through this procedure, and empirically demonstrate the necessity of a multi-modal multi-hop approach to solve our task: our multi hop model, ImplicitDecomp, achieves an average F1 of 51.7 over cross-modal questions, substantially outperforming a strong baseline that achieves 38.2 F1, but still lags significantly behind human performance, which is at 90.1 F1.
  • Pushing it out of the Way: Interactive Visual Navigation

    Kuo-Hao Zeng, Luca Weihs, A. Farhadi, R. MottaghiarXiv2021
    We have observed significant progress in visual navigation for embodied agents. A common assumption in studying visual navigation is that the environments are static; this is a limiting assumption. Intelligent navigation may involve interacting with the environment beyond just moving forward/backward and turning left/right. Sometimes, the best way to navigate is to push something out of the way. In this paper, we study the problem of interactive navigation where agents learn to change the environment to navigate more efficiently to their goals. To this end, we introduce the Neural Interaction Engine (NIE) to explicitly predict the change in the environment caused by the agent’s actions. By modeling the changes while planning, we find that agents exhibit significant improvements in their navigational capabilities. More specifically, we consider two downstream tasks in the physics-enabled, visually rich, AI2-THOR environment: (1) reaching a target while the path to the target is blocked (2) moving an object to a target location by pushing it. For both tasks, agents equipped with an NIE significantly outperform agents without the understanding of the effect of the actions indicating the benefits of our approach.
  • CODE: COMPILER-BASED NEURON-AWARE ENSEMBLE TRAINING

    E. Trainiti, Thanapon Noraset, David Demeter, Doug Downey, Simone CampanoniProceedings of Machine Learning and Systems2021
    Deep Neural Networks (DNNs) are redefining the state-of-the-art performance in a variety of tasks like speech recognition and image classification. These impressive results are often enabled by ensembling many DNNs together. Surprisingly, ensembling is often done by training several DNN instances from scratch and combining them. This paper shows that there is significant redundancy in today’s way of ensembling. The novelty we propose is CODE, a compiler approach designed to automatically generate DNN ensembles while avoiding unnecessary retraining among its DNNs. For this purpose, CODE introduces neuron-level analyses and transformations aimed at identifying and removing redundant computation from the networks that compose the ensemble. Removing redundancy enables CODE to train large DNN ensembles in a fraction of the time and memory footprint needed by current techniques. These savings can be leveraged by CODE to increase the output quality of its ensembles.
  • Searching for Scientific Evidence in a Pandemic: An Overview of TREC-COVID

    Kirk Roberts, Tasmeer Alam, Steven Bedrick, Dina Demner-Fushman, Kyle Lo, I. Soboroff, E. Voorhees, Lucy Lu Wang, W. HersharXiv2021
    We present an overview of the TREC-COVID Challenge, an information retrieval (IR) shared task to evaluate search on scientific literature related to COVID-19. The goals of TREC-COVID include the construction of a pandemic search test collection and the evaluation of IR methods for COVID-19. The challenge was conducted over five rounds from April to July, 2020, with participation from 92 unique teams and 556 individual submissions. A total of 50 topics (sets of related queries) were used in the evaluation, starting at 30 topics for Round 1 and adding 5 new topics per round to target emerging topics at that state of the still-emerging pandemic. This paper provides a comprehensive overview of the structure and results of TREC-COVID. Specifically, the paper provides details on the background, task structure, topic structure, corpus, participation, pooling, assessment, judgments, results, top-performing systems, lessons learned, and benchmark datasets.
  • Improving the Accessibility of Scientific Documents: Current State, User Needs, and a System Solution to Enhance Scientific PDF Accessibility for Blind and Low Vision Users

    Lucy Lu Wang, Isabel Cachola, Jonathan Bragg, Evie Yu-Yen Cheng, Chelsea Hess Haupt, Matt Latzke, Bailey Kuehl, Madeleine van Zuylen, Linda M. Wagner, Daniel S. WeldarXiv2021
    The majority of scientific papers are distributed in PDF, which pose challenges for accessibility, especially for blind and low vision (BLV) readers. We characterize the scope of this problem by assessing the accessibility of 11,397 PDFs published 2010--2019 sampled across various fields of study, finding that only 2.4% of these PDFs satisfy all of our defined accessibility criteria. We introduce the SciA11y system to offset some of the issues around inaccessibility. SciA11y incorporates several machine learning models to extract the content of scientific PDFs and render this content as accessible HTML, with added novel navigational features to support screen reader users. An intrinsic evaluation of extraction quality indicates that the majority of HTML renders (87%) produced by our system have no or only some readability issues. We perform a qualitative user study to understand the needs of BLV researchers when reading papers, and to assess whether the SciA11y system could address these needs. We summarize our user study findings into a set of five design recommendations for accessible scientific reader systems. User response to SciA11y was positive, with all users saying they would be likely to use the system in the future, and some stating that the system, if available, would become their primary workflow. We successfully produce HTML renders for over 12M papers, of which an open access subset of 1.5M are available for browsing at https://scia11y.org/.
  • ManipulaTHOR: A Framework for Visual Object Manipulation

    Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha Kembhavi, R. MottaghiarXiv2021
    The domain of Embodied AI has recently witnessed substantial progress, particularly in navigating agents within their environments. These early successes have laid the building blocks for the community to tackle tasks that require agents to actively interact with objects in their environment. Object manipulation is an established research domain within the robotics community and poses several challenges including manipulator motion, grasping and long-horizon planning, particularly when dealing with oft-overlooked practical setups involving visually rich and complex scenes, manipulation using mobile agents (as opposed to tabletop manipulation), and generalization to unseen environments and objects. We propose a framework for object manipulation built upon the physics-enabled, visually rich AI2-THOR framework and present a new challenge to the Embodied AI community known as ArmPointNav. This task extends the popular point navigation task [2] to object manipulation and offers new challenges including 3D obstacle avoidance, manipulating objects in the presence of occlusion, and multi-object manipulation that necessitates long term planning. Popular learning paradigms that are successful on PointNav challenges show promise, but leave a large room for improvement.
  • Bootstrapping Relation Extractors using Syntactic Search by Examples

    Matan Eyal, Asaf Amrami, Hillel Taub-Tabib, Yoav GoldbergEACL2021
    The advent of neural-networks in NLP brought with it substantial improvements in supervised relation extraction. However, obtaining a sufficient quantity of training data remains a key challenge. In this work we propose a process for bootstrapping training datasets which can be performed quickly by non-NLP-experts. We take advantage of search engines over syntactic-graphs (Such as Shlain et al. (2020)) which expose a friendly by-example syntax. We use these to obtain positive examples by searching for sentences that are syntactically similar to user input examples. We apply this technique to relations from TACRED and DocRED and show that the resulting models are competitive with models trained on manually annotated data and on data obtained from distant supervision. The models also outperform models trained using NLG data augmentation techniques. Extending the search-based approach with the NLG method further improves the results.
All Projects
All Years