Learn more about AI2's Lasting Impact Award
All Projects
All Years
Viewing 491-500 of 519 papers
  • VisKE: Visual Knowledge Extraction and Question Answering by Visual Verification of Relation Phrases

    Fereshteh Sadeghi, Santosh Divvala, and Ali FarhadiCVPR2015
    How can we know whether a statement about our world is valid. For example, given a relationship between a pair of entities e.g., 'eat(horse, hay)', how can we know whether this relationship is true or false in general. Gathering such knowledge about entities and their relationships is one of the fundamental challenges in knowledge extraction. Most previous works on knowledge extraction havefocused purely on text-driven reasoning for verifying relation phrases. In this work, we introduce the problemof visual verification of relation phrases and developed aVisual Knowledge Extraction system called VisKE. Given a verb-based relation phrase between common nouns, our approach assess its validity by jointly analyzing over textand images and reasoning about the spatial consistency of the relative configurations of the entities and the relation involved. Our approach involves no explicit human supervision there by enabling large-scale analysis. Using our approach, we have already verified over 12000 relation phrases. Our approach has been used to not only enrich existing textual knowledge bases by improving their recall,but also augment open-domain question-answer reasoning.
  • Exploring Markov Logic Networks for Question Answering

    Tushar Khot, Niranjan Balasubramanian, Eric Gribkoff, Ashish Sabharwal, Peter Clark, and Oren EtzioniEMNLP2015
    Elementary-level science exams pose significant knowledge acquisition and reasoning challenges for automatic question answering. We develop a system that reasons with knowledge derived from textbooks, represented in a subset of first-order logic. Automatic extraction, while scalable, often results in knowledge that is incomplete and noisy, motivating use of reasoning mechanisms that handle uncertainty. Markov Logic Networks (MLNs) seem a natural model for expressing such knowledge, but the exact way of leveraging MLNs is by no means obvious. We investigate three ways of applying MLNs to our task. First, we simply use the extracted science rules directly as MLN clauses and exploit the structure present in hard constraints to improve tractability. Second, we interpret science rules as describing prototypical entities, resulting in a drastically simplified but brittle network. Our third approach, called Praline, uses MLNs to align lexical elements as well as define and control how inference should be performed in this task. Praline demonstrates a 15% accuracy boost and a 10x reduction in runtime as compared to other MLN-based methods, and comparable accuracy to word-based baseline approaches.
  • Answering Elementary Science Questions by Constructing Coherent Scenes using Background Knowledge

    Yang Li and Peter ClarkEMNLP2015
    Much of what we understand from text is not explicitly stated. Rather, the reader uses his/her knowledge to fill in gaps and create a coherent, mental picture or “scene” depicting what text appears to convey. The scene constitutes an understanding of the text, and can be used to answer questions that go beyond the text. Our goal is to answer elementary science questions, where this requirement is pervasive; A question will often give a partial description of a scene and ask the student about implicit information. We show that by using a simple “knowledge graph” representation of the question, we can leverage several large-scale linguistic resources to provide missing background knowledge, somewhat alleviating the knowledge bottleneck in previous approaches. The coherence of the best resulting scene, built from a question/answer-candidate pair, reflects the confidence that the answer candidate is correct, and thus can be used to answer multiple choice questions. Our experiments show that this approach outperforms competitive algorithms on several datasets tested. The significance of this work is thus to show that a simple “knowledge graph” representation allows a version of “interpretation as scene construction” to be made viable.
  • Semantic Role Labeling for Process Recognition Questions

    Samuel Louvan, Chetan Naik, Veronica Lynn, Ankit Arun, Niranjan Balasubramanian, and Peter ClarkK-CAP • First International Workshop on Capturing Scientific Knowledge (SciKnow)2015
    We consider a 4th grade level question answering task. We focus on a subset involving recognizing instances of physical, biological, and other natural processes. Many processes involve similar entities and are hard to distinguish using simple bag-of-words representations alone.
  • BDD-Guided Clause Generation

    Brian Kell, Ashish Sabharwal, and Willem-Jan van HoeveCPAIOR2015
    Nogood learning is a critical component of Boolean satisfiability (SAT) solvers, and increasingly popular in the context of integer programming and constraint programming. We present a generic method to learn valid clauses from exact or approximate binary decision diagrams (BDDs) and resolution in the context of SAT solving. We show that any clause learned from SAT conflict analysis can also be generated using our method, while, in addition, we can generate stronger clauses that cannot be derived from one application of conflict analysis. Importantly, since SAT instances are often too large for an exact BDD representation, we focus on BDD relaxations of polynomial size and show how they can still be used to generated useful clauses. Our experimental results show that when this method is used as a preprocessing step and the generated clauses are appended to the original instance, the size of the search tree for a SAT solver can be significantly reduced.
  • VISALOGY: Answering Visual Analogy Questions

    Fereshteh Sadeghi, C. Lawrence Zitnick, and Ali FarhadiNIPS2015
    In this paper, we study the problem of answering visual analogy questions. These questions take the form of image A is to image B as image C is to what. Answering these questions entails discovering the mapping from image A to image B and then extending the mapping to image C and searching for the image D such that the relation from A to B holds for C to D.We pose this problem as learning an embedding that encourages pairs of analogous images with similar transformations to be close together using convolutional neural networks with a quadruple Siamese architecture. We introduce a dataset of visual analogy questions in natural images, and show first results of its kind on solving analogy questions on natural images.
  • Mind the Gap: A Generative Approach to Interpretable Feature Selection and Extraction

    Been Kim, Julie Shah, and Finale Doshi-VelezNIPS2015
    We present the Mind the Gap Model (MGM), an approach for interpretable feature extraction and selection. By placing interpretability criteria directly into the model, we allow for the model to both optimize parameters related to interpretability and to directly report a global set of distinguishable dimensions to assist with further data exploration and hypothesis generation. MGM extracts distinguishing features on real-world datasets of animal features, recipes ingredients, and disease co-occurrence. It also maintains or improves performance when compared to related approaches. We perform a user study with domain experts to show the MGM’s ability to help with dataset exploration.
  • Parsing Algebraic Word Problems into Equations

    Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas AngTACL2015
    This paper formalizes the problem of solving multi-sentence algebraic word problems as that of generating and scoring equation trees. We use integer linear programming to generate equation trees and score their likelihood by learning local and global discriminative models. These models are trained on a small set of word problems and their answers, without any manual annotation, in order to choose the equation that best matches the problem text. We refer to the overall system as ALGES. We compare ALGES with previous work and show that it covers the full gamut of arithmetic operations whereas Hosseini et al. (2014) only handle addition and subtraction. In addition, ALGES overcomes the brittleness of the Kush- man et al. (2014) approach on single-equation problems, yielding a 15% to 50% reduction in error.
  • Discriminative and Consistent Similarities in Instance-Level Multiple Instance Learning

    Mohammad Rastegari, Hannaneh Hajishirzi, and Ali FarhadiCVPR2015
    In this paper we present a bottom-up method to instance level Multiple Instance Learning (MIL) that learns to discover positive instances with globally constrained reasoning about local pairwise similarities. We discover positive instances by optimizing for a ranking such that positive (top rank) instances are highly and consistently similar to each other and dissimilar to negative instances. Our approach takes advantage of a discriminative notion of pairwise similarity coupled with a structural cue in the form of a consistency metric that measures the quality of each similarity. We learn a similarity function for every pair of instances in positive bags by how similarly they differ from instances in negative bags, the only certain labels in MIL. Our experiments demonstrate that our method consistently outperforms state-of-the-art MIL methods both at bag-level and instance-level predictions in standard benchmarks, image category recognition, and text categorization datasets.
  • Generating Notifications for Missing Actions: Don’t forget to turn the lights off!

    Bilge Soran, Ali Farhadi, and Linda ShapiroICCV2015
    We all have experienced forgetting habitual actions among our daily activities. For example, we probably have forgotten to turn the lights off before leaving a room or turn the stove off after cooking. In this paper, we propose a solution to the problem of issuing notifications on actions that may be missed. This involves learning about interdependencies between actions and being able to predict an ongoing action while segmenting the input video stream. In order to show a proof of concept, we collected a new egocentric dataset, in which people wear a camera while making lattes. We show promising results on the extremely challenging task of issuing correct and timely reminders. We also show that our model reliably segments the actions, while predicting the ongoing one when only a few frames from the beginning of the action are observed. The overall prediction accuracy is 46.2% when only 10 frames of an action are seen (2/3 of a sec). Moreover, the overall recognition and segmentation accuracy is shown to be 72.7% when the whole activity sequence is observed. Finally, the online prediction and segmentation accuracy is 68.3% when the prediction is made at every time step.
All Projects
All Years